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Abstract: A multiple-partners assignment game with heterogeneous sales and multi-

unit demands consists of a set of sellers that own a given number of indivisible units

of potentially many di¤erent goods and a set of buyers who value those units and

want to buy at most an exogenously �xed number of units. We de�ne a competitive

equilibrium for this generalized assignment game and prove its existence by using

only linear programming. In particular, we show how to compute equilibrium price

vectors from the solutions of the dual linear program associated to the primal linear

program de�ned to �nd optimal assignments. Using only linear programming tools,

we also show (i) that the set of competitive equilibria (pairs of price vectors and

assignments) has a Cartesian product structure: each equilibrium price vector is part
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of a competitive equilibrium with all optimal assignments, and vice versa; (ii) that

the set of (restricted) equilibrium price vectors has a natural lattice structure; and

(iii) how this structure is translated into the set of agents�utilities that are attainable

at equilibrium.

Journal of Economic Literature Classi�cation Numbers: C78; D78.

Keywords: Matching; Assignment Game; Indivisible Goods; Competitive Equilibrium;

Lattice.

1 Introduction

We study competitive equilibria of markets with indivisible goods. The multiple-partners

assignment game with heterogeneous sales and multi-unit demands (a market) is a many-

to-many assignment problem with transferable utility in which agents can be partitioned

into two disjoint sets: the set of buyers and the set of sellers. Sellers deliver indivisible units

of (potentially di¤erent) goods to buyers who pay a given amount of money for every unit

of each good. Each seller owns a given number of indivisible units of each good and each

buyer may buy di¤erent units of the goods up to an exogenously �xed number which comes

from constraints on his capacity for transport, storage, etc. Each seller assigns a per-unit

value (or reservation price) to each of the di¤erent goods that he owns. Each buyer assigns

a valuation (or maximal willingness to pay) to each unit of the di¤erent goods.

There are many assignment problems with these characteristics.1 Namely, each agent

can be assigned to (i.e., perform a transaction with) many agents of the other side of the

market, utility is transferable because money may be used as a means of exchange, a unit of

a particular good owned by a seller may be di¤erent from a unit of another good owned by

the same seller, and buyers may be willing to buy several units of di¤erent goods. Given an

initial distribution of units of the goods among all sellers, the main questions to be answered

are: (i) what is the optimal assignment of goods to buyers? (ii) what are the prices (if any)

that would clear the market?, (iii) what is the subset of goods that are indeed exchanged?,

and (iv) what is the set of (total) utilities that agents might receive?

Given a market, an assignment is a description of how many units of each of the goods

are exchanged between every pair formed by a buyer and a seller. An assignment is feasible
1For instance, a primary market of blood, a local market of fresh products that operates once or twice

per week, and a clothing market in a city with wholesalers and retailers.
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if it satis�es the quantity and capacity constraints of all agents. A feasible assignment is

optimal if it maximizes the total net value (the sum of the valuations minus the reserve price

of all exchanged units). It turns out that the set of optimal assignments of a market can be

identi�ed with the set of integer solutions of a natural Primal Linear Program where the

objective function (to be maximized) is the total net value, which depends linearly on the

assignment, subject to non-negativity constraints and to feasibility constraints.2 Results on

integer programming (see Schrijver, 1996) guarantee that the Primal Linear Program has

at least one solution with integer components, since the set of all real-valued solutions of

the Primal Linear Program is a polytope whose vertices have all integer-valued coordinates.

To choose an optimal assignment requires information about valuations, reservation

prices, and quantity and capacity constraints. Hence, competitive markets may emerge (or

be used) as a way of selecting an optimal assignment with low informational requirements.

We will assume that buyers and sellers exchange units of the goods with money through

competitive markets in which a price vector (a non-negative price for each good) is an-

nounced. Given the price vector, each seller determines the optimal number of units he

wants to sell of each of the goods he owns and each buyer determines the optimal num-

ber of units he wants to buy of each good, without exceeding his capacity constraints. A

price vector p is an equilibrium price vector of the market if the plans of all sellers and

buyers are compatible at p; namely, the market of each good clears in the sense that all

optimal plans constitute a feasible and compatible set of exchanges (they constitute a fea-

sible assignment). In this case we say that the equilibrium price vector and the feasible

assignment are compatible. A competitive equilibrium of the market is a pair formed by an

equilibrium price vector and a compatible assignment. We show using well-known duality

theorems of linear programming that each market has at least a competitive equilibrium.3

All our proofs rely only on well-know results of linear programming. First, we observe that

the Dual Linear Program has a non-empty set of solutions; second, we give a procedure to

construct an equilibrium price vector from a given solution of the Dual Linear Program;

and third, we show that any optimal solution of the Primal Linear Program is compatible

with this equilibrium price vector. Thus, the set of competitive equilibria of a market is

2Gale (1960) is still a useful reference for the use of linear programming techniques in the analysis of

many linear economic models.
3Milgrom (2010) establishes the existence of competitive equilibrium prices for a more general model

which also includes multi-unit auctions and exchange economies as special cases (see Section 2 for a brief

description of Milgrom (2010)�s model).
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intimately related to the set of solutions of the Primal Linear Program (compatible optimal

assignments) and the Dual Linear Program (equilibrium price vectors).4

We next show that the set of competitive equilibria of a market has a Cartesian product

structure: each equilibrium price vector is compatible with all optimal assignments and

each optimal assignment is compatible with all equilibrium price vectors. Moreover, the set

of equilibrium price vectors has a lattice structure with the natural order of vectors � (a

re�exive, transitive, antisymmetric, and incomplete binary relation) on the n�dimensional
Euclidian space, where n is the number of goods and given two vectors x; y 2 Rn, x � y if
and only if xj � yj for all j = 1; :::; n. As a consequence of this lattice structure, the set

of equilibrium price vectors contains two extreme elements: the sellers-optimal equilibrium

price vector with each component being larger or equal to the corresponding component of

all other equilibrium price vectors and the buyers-optimal equilibrium price vector with each

component being smaller or equal to the corresponding component of all other equilibrium

price vectors. We observe that, in contrast to the Shapley and Shubik (1972)�s assignment

game, this natural order � does not translate into the set of utilities of buyers (nor the set
of utilities of sellers) that can be attainable at equilibrium. Partly, this is because there is

an insubstantial multiplicity of equilibrium prices of the goods that are not interchanged

in any equilibrium assignment. We solve this multiplicity by de�ning the set of restricted

equilibrium price vectors as those equilibrium price vectors for which the price of the goods

that are never interchanged in equilibrium is equal to their maximal one without altering the

equilibrium property of the full price vector. We show that the set of restricted equilibrium

price vectors has a complete lattice structure with the natural order � of vectors. Then,

we show that the set of total utilities of buyers that are attainable at equilibrium embeds

the lattice structure of the set of restricted equilibrium price vectors. However, we also

show that the set of total utilities of the sellers that are attainable at equilibrium does not

inherit this structure.

There are several papers that have studied generalized versions of Shapley and Shubik

(1972)�s one-to-one assignment game to many-to-one or many-to-many models. Camiña

(2006), Sotomayor (1992, 1999, 2002, 2007, 2009a, 2009b), Bikhchandani and Ostroy (2002),

Milgrom (2010), and Fagebaume, Gale, and Sotomayor (2010) are some of them. However,

part of the emphasis of this literature has been put on the study of alternative cooperative

4Shapley and Shubik (1972) already pointed out the relationships among the set of competitive equilibria

of a one-to-one assignment game, the core of its associated TU-game, and the solutions of the corresponding

primal and dual linear programs.
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solutions of the associated TU-game, although Camiña (2006), Sotomayor (2007, 2009b),

Bikhchandani and Ostroy (2002), and Milgrom (2010) also study the competitive equilibria

of their generalized assignment games. At the end of Section 2 and in Subsection 5.1 we

describe some of this very related literature as well as its connections with our model and

results.

The paper is organized as follows. In Section 2 we de�ne the multiple-partners assign-

ment game with heterogeneous sales and multi-unit demands (a market) and compare our

model with existing related models in the literature. In Section 3, we de�ne optimal as-

signments and the associated Primal Linear Program of a market. In Section 4 we present

the notion of a competitive equilibrium and show its existence by using duality theorems

of Linear Programming. In Section 5 we study the structure of the set of competitive equi-

libria by showing that it is a Cartesian product of the set of equilibrium price vectors times

the set of optimal assignments, and that the set of restricted equilibrium price vectors has

a complete lattice structure with the natural partial order �; we also show how this partial
order endows a lattice structure to the set of total utilities of the buyers (but not to the set

of total utilities of the sellers) that are attainable at equilibrium.

2 Preliminaries and Related Models

The multiple-partners assignment game with heterogeneous sales and multi-unit demands

(a market) consists of seven objects. The �rst three are three �nite and disjoint sets. The

set of m buyers B = fb1; :::; bmg, the set of n type of goods G = fg1; :::; gng, and the set of
t sellers S = fs1; :::; stg. We identify buyer bi with i, good gj with j, and seller sk with k.
For each buyer i 2 B and each good j 2 G, let vij � 0 be the monetary valuation

that buyer i assigns to each unit of good j; namely, vij is the maximum price that buyer

i is willing to pay for each unit of good j: We denote by V = (vij)(i;j)2B�G the matrix of

valuations. Each buyer i 2 B can buy at most di > 0 units in total. The amount di should
be interpreted as a capacity constraint of buyer i due to limits on his ability for transport,

storage, etc. We denote by d = (di)i2B the vector of maximal demands. We are assuming

that buyers have a constant marginal valuation of each good in the sense that the additional

value for buyer i of an extra unit of good j is constant and equal to vij, as long as the total

consumption of buyer i is strictly smaller than di:

For each good j 2 G and each seller k 2 S, let rjk � 0 be the monetary valuation that
seller k assigns to each unit of good j; namely, rjk is the reservation (or minimum) price
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that seller k is willing to accept for each unit of good j. We denote by R = (rjk)(j;k)2G�S the

matrix of reservation prices. Each seller k 2 S has a given number qjk 2 Z+ of indivisible
units of each good j 2 G, where Z+ is the set of non-negative integers. We denote by
Q = (qjk)(j;k)2G�S the capacity matrix. Observe that we are admitting the possibility that

seller k may have zero units of some of the goods. However, we require that the reservation

price for seller k of a good that he has no units to sell has to be equal to zero; namely, for

all k 2 S and all j 2 G,
if qjk = 0 then rjk = 0: (1)

Moreover, we assume that there is a strictly positive amount of each good; namely,

for each j 2 G there exists k 2 S such that qjk > 0: (2)

A market M is a 7-tuple (B;G; S; V; d; R;Q) satisfying (1) and (2). This constitutes a

many-to-many generalization of Shapley and Shubik (1972)�s (one-to-one) assignment game

in which each buyer only wants to buy at most one unit (i.e., di = 1 for all i 2 B), there is
only one unit of each good and the set of goods and sellers can be uniquely identi�ed with

each other because each seller only owns the unique available unit of a good (i.e., n = t

and for all (j; k) 2 G� S, qjk = 1 if j = k and qjk = 0 if j 6= k).
There are other papers that have extended Shapley and Shubik (1972) model. For

example, Camiña (2006) studies an instance of our model in which there is a unique seller

that owns n di¤erent indivisible objects and each buyer wants to buy at most one object

(i.e., t = 1, qj1 = 1 for all j = 1; :::; n, and di = 1 for all i 2 B). Sotomayor (1992,

1999, 2007, 2009a) and Fagebaume, Gale, and Sotomayor (2010) study another extension

of the assignment game in which buyers may want to buy several goods, although they

are not interested in acquiring more than one unit from a given seller, and each seller

owns a number of identical and indivisible objects; thus, a partnership between a buyer

and a seller is binary: either it is form (and the buyer receives one unit of the unique

good owned by the seller) or it is not. In contrast, to describe a partnership between

a buyer and a seller in our market, we have to specify how many units of each good

the buyer receives from the seller. Sotomayor (2002, 2009b) considers the multiple time-

sharing assignment game, which is roughly a continuous extension of the previous model.

If a partnership between a buyer (a worker) and a seller (a �rm) is formed, both agents

have to contribute with the same amount of units of labor time and each �rm o¤ers only

one type of service; partnerships may have a continuum of intensities but they are still

one-dimensional. Milgrom (2010) introduces and studies the space of assignment messages
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to investigate (and solve) the di¢ culty that agents face, in some mechanism design settings,

when reporting their �types�(or valuations of goods, or sets of goods). The model is very

general and contains as particular cases multi-unit auctions (with substitutable goods),

exchange economies, and integer assignment games. The last one generalizes the Shapley

and Shubik (1972)�s model in many ways; in particular, agents may buy some good and sell

others (there are no a priori sets of buyers and sellers) and may trade many units of each

good, instead of just one unit. For our model, which is a particular instance of Milgrom

(2010), we obtain additional results; for instance, that the set of competitive equilibria is

the Cartesian product of the set of equilibrium price vectors and optimal assignments and

that the sets of agents�utilities that are attainable at equilibrium partly inherit the lattice

structure of the set of equilibrium price vectors.5

3 Optimal Assignments

In this section we de�ne optimal assignments of a market and show using Linear Program-

ming that they do exist.

An assignment for market M is a matrix A = (Aijk)(i;j;k)2B�G�S 2 Zm�n�t+ . Given an

assignment A; each Aijk should be interpreted as follows: buyer i receives Aijk units of

good j from seller k. When no confusion can arise, we omit the sets to which the subscripts

belong to and write, for instance,
P

ijk Aijk and
P

iAijk instead of
P

(i;j;k)2B�G�S Aijk andP
i2B Aijk, respectively. We are only interested in assignments satisfying all demand and

supply restrictions of feasibility.

De�nition 1 The assignment A is feasible for market M if:

(Demand Feasibility) For all i 2 B,
P

jk Aijk � di:
(Supply Feasibility) For all (j; k) 2 G� S,

P
iAijk � qjk:

We denote the set of all feasible assignments of market M by F .

For each (i; j; k) 2 B �G� S; let

� ijk =

(
vij � rjk if qjk > 0

0 if qjk = 0
(3)

5See Subsection 5.1 for a more detailed comparison of our results with the main results of these related

models.
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be the per unit gain from the trade of good j between buyer i and seller k; observe that if

seller k does not have any unit of good j the per unit gain from trade of good j with all

buyers is equal to zero and that � ijk is negative if vij < rjk. Let M be a market and A 2 F
be a feasible assignment. We de�ne the total gain from trade of market M at assignment

A as

T (A) =
P

ijk � ijk � Aijk:

De�nition 2 A feasible assignment A� is optimal for market M if, for any feasible as-

signment A 2 F , T (A�) � T (A) :

We denote by F � the set of all optimal assignments for market M . In order to �nd F �

we consider the following Primal Linear Program (PLP).

Primal linear Program (PLP):

max
(Aijk)(i;j;k)2B�G�S2Rm�n�t

P
ijk � ijk � Aijk

s. t. (P.1)
P

jk Aijk � di for all i 2 B;
(P.2)

P
iAijk � qjk for all (j; k) 2 G� S;

(P.3) Aijk � 0 for all (i; j; k) 2 B �G� S:

Results in linear programming guarantee that the set of (real-valued) solutions of the

(PLP) is non-empty (see for instance Dantzig (1963)). Moreover, results in integer pro-

gramming guarantee that at least one of these solutions has integer components (see Schri-

jver, 1996); namely, F � 6= ;. Thus, we state without proof the following result.

Proposition 1 Every market M has a nonempty set of optimal assignments.

4 Competitive Equilibria

4.1 De�nition and Existence

We consider the situation where buyers and sellers trade through competitive markets.

That is, there is a unique market (and its corresponding unique price) for each of the

goods. Hence, a price vector is an n�dimensional vector of non-negative real numbers.
Buyers and sellers are price-takers: given a price vector p = (pj)j2G 2 Rn+ sellers supply
units of the goods (up to their capacity) in order to maximize revenues at p and buyers

demand units of the goods (up to their maximal demands) in order to maximize the total

net valuation at p.

8



Supply of seller k: For each price vector p = (pj)j2G 2 Rn+, seller k supplies of every
good j any feasible amount that maximizes revenues; namely,

Sjk(pj) =

8><>:
fqjkg if pj > rjk
f0; 1; :::; qjkg if pj = rjk
f0g if pj < rjk:

(4)

To de�ne the demands of buyers we need the following notation. Let p 2 Rn+ be given
and consider buyer i. Let

r>
i (p) = fj 2 G j vij � pj = max

j02G
fvij0 � pj0g > 0g (5)

be the set of goods that give to buyer i the maximum (and strictly positive) net valuation

at p. Obviously, for some p; the set r>
i (p) may be empty. Let

r�
i (p) = fj 2 G j vij � pj = max

j02G
fvij0 � pj0g � 0g (6)

be the set of goods that give to buyer i the maximum (and non-negative) net valuation at

p. Obviously, for some p; the set r�
i (p) may also be empty. Moreover,

r>
i (p) � r�

i (p): (7)

Demand of buyer i: For each price vector p = (pj)j2G 2 Rn+, buyer i demands any
feasible amounts of the goods that maximize the net valuations at p; namely,

Di(p) = f� = (�jk)(j;k)2G�S 2 Zn�t j (D.a) 8(j; k) 2 G� S, �jk � 0;
(D.b)

P
jk �jk � di;

(D.c) r>
i (p) 6= ; =)

P
jk �jk = di; and

(D.d)
P

k �jk > 0 =) j 2 r�
i (p)g:

Thus, Di(p) describes the set of all trades that maximize the net valuation of buyer i

at p: Observe that the set of trades described by each element in the set Di(p) gives the

same net valuation to buyer i; i.e., i is indi¤erent among all trade plans speci�ed by each

� 2 Di(p):

Let A be an assignment and let i be a buyer. We denote by A(i) = (A(i)jk)(j;k)2G�S the

element in Zn�t+ such that, for all (j; k) 2 G� S, A(i)jk = Aijk:

De�nition 3 A competitive equilibrium of market M is a pair (p;A) 2 Rn+ � F � Rn+ �
Zm�n�t+ such that:
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(E.D) For each buyer i 2 B; A(i) 2 Di (p) :

(E.S) For each good j 2 G and each seller k 2 S;
P

iAijk 2 Sjk (pj) :

We say that a price vector p and a feasible assignment A are compatible if (p;A) is a

competitive equilibrium of market M . The vector p 2 Rn+ is an equilibrium price of market

M if there exists A 2 F such that (p;A) is a competitive equilibrium of market M .

Let P � be the set of equilibrium price vectors of market M: Theorem 1 below states

that the set P � is always non-empty.

Theorem 1 For every market M; P � 6= ;:

Milgrom (2010) proves Theorem 1 for a more general model by showing that equilibrium

price vectors are the optimal solutions of a non-linear and continuous function of p restricted

to a compact set.6 However, in Subsection 4.3 below we include our proof because it only

uses linear programming arguments and it is based on computing an optimal assignment

(as one of the integer solutions of the Primal Linear Program (PLP)) and a particular

equilibrium price vector in P � associated to one of the solutions of the Dual Linear Program

(DLP) that we present below.

4.2 The Dual Linear Program

In this subsection we present the Dual Linear Program (DLP) and state for our setting two

well-known results of linear programming: the Strong Duality Theorem and the Comple-

mentary Slackness Theorem. Using these two theorems we will show in Theorem 2 that

there exists a strong link between the set of competitive equilibria and the set of solutions

of the (PLP) and the (DLP).7

Let M = (B; S;G; V; d; R;Q) be a market. Let  = (i)i2B 2 Rm be an m�dimensional
vector and � = (�jk)(j;k)2G�S 2 Rn�t be a (n� t)�matrix (below we give an interpretation
of these two objects). Observe that the following linear program is the dual of the PLP

de�ned above.
6Sotomayor (2007) contains an existential proof of the nonemptyness of the set of equilibrium price

vectors for her related model based on Tarski (1955)�s �xed point theorem.

7In Thompson (1980) the dual solutions are called the core of a many-to-many assignment game.
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Dual Linear Program (DLP):

min
(;�)2Rm�Rn�t

P
i di � i +

P
jk qjk � �jk

s. t. (D.1) i + �jk � � ijk for all (i; j; k) 2 B �G� S;
(D.2) i � 0 for all i 2 B;
(D.3) �jk � 0 for all (j; k) 2 G� S:

Let D be the set of dual feasible solutions (i.e., the set of vectors  2 Rm and matrices
� 2 Rn�t that satisfy conditions (D.1), (D.2), and (D.3)), and let D� be the set of solutions

of the (DLP). Results in linear programming guarantee that the (DLP) has at least a

solution (see for instance Schrijver (1996)); namely, D� 6= ;. Moreover, D� is a convex

subset of Rm � Rn�t. Thus, we state without proof the following result.

Proposition 2 For every market M the set of solutions D� of the (DLP) is non-empty

and convex.

A dual solution (; �) 2 D� can be interpreted as a way of sharing the gains of trade

among buyers and sellers associated to a particular competitive equilibrium (p;A). The ith

component of vector  describes the (unique) per unit gain of buyer i of all units that he

buys and the (j; k)th element of matrix � describes the (unique) per unit gain of seller k

of good j. For instance, assume that (; �) 2 D� and (p;A) is a competitive equilibrium

with Aijk > 0. Then, as we will formally show later, i = vij � pj and �jk = pj � rjk: Thus,
we can identify each dual solution with one equilibrium price vector, and vice versa. As

we will see, this identi�cation is not unique. A �rst (but insubstantial) reason of why this

identi�cation is not unique is the following. Let (; �) 2 D� and assume that qjk = 0 for

some (j; k) 2 G � S. Let �0jk � 0 be arbitrary. De�ne (��jk; �0jk) as the (n � t)�matrix
obtained from � after replacing �jk by �0jk: Then, (; (��jk; �

0
jk)) 2 D�; that is, if qjk = 0

then the value of the (j; k)th entry of � is irrelevant. Hence, we assume without loss of

generality that

�jk = 0 whenever qjk = 0: (8)

Under this convention, the following result holds.

Proposition 3 For every market M the set of solutions D� of the (DLP) is a compact

subset of Rm � Rn�t.

Let M be a market and (; �) 2 D be a dual feasible solution. We write T d(; �) to
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denote the value of the objective function of the (DLP) at (; �); that is,

T d (; �) =
P

i di � i +
P

jk qjk � �jk:

The Strong Duality Theorem and the Complementary Slackness Theorem of Linear

Programming (see Dantzig (1963) and Schrijver (1996)) applied to our setting say the

following.

Strong Duality Theorem Let M be a market and assume A 2 F and (; �) 2 D.
Then,

A 2 F � and (; �) 2 D� if and only if T (A) = T d(; �): (9)

Complementary Slackness Theorem Let M be a market and assume that A 2 F and
(; �) 2 D. Then, A 2 F � and (; �) 2 D� if and only if

(CS.1) for all (i; j; k) 2 B �G� S, Aijk � (i + �jk � � ijk) = 0,
(CS.2) for all i 2 B, (

P
jk Aijk � di) � i = 0, and

(CS.3) for all (j; k) 2 G� S, (
P

iAijk � qjk) � �jk = 0.

4.3 Proof of Theorem 1

Before proving Theorem 1 we de�ne for each solution (�; ��) 2 D� of the (DLP) its

associated price vector p(
�;��) = (p

(�;��)
j )j2G as follows. For each j 2 G,

p
(�;��)
j = min

fk2Sjqjk>0g
f��jk + rjkg: (10)

Observe that when computing the minimum among all sellers, we have to exclude those

that do not have good j; otherwise, the price of good j would be equal to 0 since, by (1)

and (8), rjk = 0 and ��jk = 0: Moreover, we de�ne p
(�;��)
j to be the minimum because, even

if qjk > 0, we may have that Aijk = 0 for all i 2 B in all optimal assignments A 2 F �; for
instance, if rjk > vij for all i 2 B.

Proof of Theorem 1 Let A� 2 F � and (�; ��) 2 D� be solutions of (PLP) and (DLP),

respectively. By Propositions 1 and 2, they exist. To show that P � 6= ;, we will show
that (p(

�;��); A�) is a competitive equilibrium of M . We �rst show that for all i 2 B,

A�(i) 2 Di(p
(�;��)):

Fix i 2 B. Since A� is feasible, (D.a) and (D.b) hold.
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Before proceeding, observe that by (D.1), for all (j0; k0) 2 G � S, �i � � ij0k0 � ��j0k0 : If
qj0k0 > 0 then, by (3), �i � vij0 � (��j0k0 + rj0k0): Thus, for all j0 2 G,

�i � vij0 � min
fk2Sjqj0k>0g

f��j0k + rj0kg: (11)

To show that (D.c) holds assume that
P

jk A
�
ijk < di. By (CS.2),

�i = 0: (12)

By (10) and (11), �i � vij � p
(�;��)
j for all j 2 G. By (12), 0 � vij � p(

�;��)
j for all j 2 G.

Hence, r>
i (p

(�;��)) = ;:
To show that (D.d) holds, �x j 2 G and assume that

P
k A

�
ijk > 0. We want to show

that j 2 r�
i (p

(�;��)): By assumption, there exists k0 2 S such that A�ijk0 > 0: Thus,

qjk0 > 0. By (CS.1), �i + �
�
jk0 = � ijk0 = vij � rjk0. Thus, �i = vij � (��jk0 + rjk0). Hence,

�i � vij �minfk2Sjqjk>0gf��jk + rjkg: By (11), �i = vij �minfk2Sjqjk>0gf��jk + rjkg: By (10),

�i = vij � p
(�;��)
j : (13)

By (10) and (11), �i � vij0 � p
(�;��)

j0
for all j0 2 G: By (13), vij � p(

�;��)
j � vij0 � p(

�;��)
j0 for

all j0 2 G. By (D.2), �i � 0: Hence, j 2 r�
i (p

(�;��)):

To show that (E.S) holds �x (j; k) 2 G�S. We want to show that
P

iA
�
ijk 2 Sjk(p

(�;��)
j ).

We distinguish among three cases.

Case 1: p(
�;��)

j > rjk: We have to show that
P

iA
�
ijk = qjk: Assume that

P
iA

�
ijk < qjk.

Then, by (CS.3), ��jk = 0. Since, by de�nition, p(
�;��)

j = minfk02Sjqjk0>0gf�
�
jk0 + rjk0g;

p
(�;��)
j � ��jk0 + rjk0 for all k0 such that qjk0 > 0: But since 0 �

P
iA

�
ijk < qjk and �

�
jk = 0,

p
(�;��)
j � rjk. Contradicting the assumption.
Case 2: p(

�;��)
j = rjk: Then (E.S) holds trivially since

P
iA

�
ijk 2 f0; :::; qjkg:

Case 3: p(
�;��)

j < rjk: We have to show that
P

iA
�
ijk = 0: By (1), qjk > 0. To obtain a

contradiction, assume there exists i 2 B such that A�ijk > 0. By (CS.1) and (3) �i + ��jk =
� ijk = vij � rjk. By hypothesis, and since by (D.3), ��jk � 0; �i � �i + ��jk < vij � p

(�;��)
j .

Thus, �i < vij�p
(�;��)
j ; contradicting (11). Thus, for all i 2 B; A�ijk = 0: Hence,

P
iA

�
ijk =

0 2 f0g = Sjk(p(
�;��)

j ):

Thus p(
�;��) 2 P �. �

The proof of Theorem 1 shows that the following statement holds.

Corollary 1 Let (; �) 2 D�. Then, p(;�) 2 P �.
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4.4 Competitive Equilibria and Solutions of the Linear Programs

Theorem 2 below says that the set of competitive equilibria (pairs of equilibrium price

vectors and compatible assignments) is strongly related to the set of solutions of the two

Linear Programs. In order to state and prove it, we need to relate price vectors with dual

solutions.

De�ne the mappings (�) : Rn+ ! Rm+ and �(�) : Rn+ ! Rn�t+ as follows. Let p 2 Rn+ be
given. For each i 2 B, de�ne

i(p) =

(
vij � pj if there exists j 2 r>

i (p)

0 otherwise,
(14)

and for each (j; k) 2 G� S, de�ne

�jk (p) =

(
pj � rjk if pj � rjk > 0
0 otherwise.

(15)

The number i(p) is the gain obtained by buyer i from each unit that he wants to buy at

p (if any) and the number �jk(p) is the pro�t obtained by seller k from each unit of good

j that he wants to sell at p (if any).

Theorem 2 Let M be a market and let p 2 Rn+ be a price vector.
(2.1) Assume p 2 P �. Then, A 2 F � if and only if p and A are compatible.
(2.2) p 2 P � if and only if ((p); �(p)) 2 D�.

Proof The statements of Theorem 2 will follow from Lemmata 2, 3, 4, and 5 below. We

start with a lemma that will be used in the proofs of Lemmata 4 and 5.

Lemma 1 Assume ((p); �(p)) 2 D� and A 2 F �. Then, p and A are compatible.
Proof of Lemma 1 Assume ((p); �(p)) 2 D� and A 2 F �. To show that p and A are
compatible, we �rst show that for all i 2 B, A(i) 2 Di(p): Since A is feasible, (D.a) and

(D.b) hold. To show that (D.c) holds, assume r>
i (p) 6= ;: Then, vij � pj > 0 for some

j 2 G. By de�nition, i(p) > 0: By (CS.2),
P

jk Aijk = di; namely, (D.c) holds.

To show that (D.d) holds, �x (i; j) 2 B�G and assume
P

k Aijk > 0:We want to show

that j 2 r�
i (p): Since

P
k Aijk > 0, there exists a seller k 2 S such that Aijk > 0. Thus,

qjk > 0 holds. Moreover, by (CS.1), i(p) + �jk(p) = � ijk. By (3),

i(p) + �jk(p) + rjk = vij: (16)

14



We distinguish between two cases.

Case 1: pj � rjk � 0: Then, �jk(p) = pj � rjk � 0: By (16), i(p) = vij � pj: If i(p) =
vij � pj > 0 then j 2 r>

i (p): By (7), j 2 r�
i (p): If i(p) = vij � pj = 0 then r>

i (p) = ;:
Hence, for all (j0; k0) 2 G� S, 0 � vij0 � pj0. Thus, j 2 r�

i (p):

Case 2: pj � rjk < 0: Then, �jk(p) = 0: By (16), i(p) + rjk = vij: Hence, i(p) + pj < vij:
Thus, i(p) < vij � pj: Hence, by de�nition of i(p), there exists j0 2 r>

i (p) such that

i(p) = vij0 � pj0 < vij � pj, but this is impossible (i.e., Case 2 never occurs).
Hence, (D.d) holds for i 2 B. Thus, A(i) 2 Di(p) for all i 2 B.
We want to show now that, for all (j; k) 2 G� S,

P
iAijk 2 Sjk (pj) holds. Fix (j; k) 2

G � S: Since A is feasible, 0 �
P

iAijk � qjk: Assume pj = rjk: Then,
P

iAijk 2 Sjk (pj)
holds trivially. Assume pj > rjk: Then, �jk(p) = pj � rjk > 0: By (CS.3),

P
iAijk = qjk:

Thus,
P

iAijk 2 Sjk(pj) = fqjkg: Finally, assume pj < rjk:. Then, �jk(p) = 0 and Sjk(pj) =
f0g: Suppose Aijk > 0: Then, qjk > 0: By (CS.1), i(p) + �jk(p) = � ijk = vij � rjk � 0:

Since pj < rjk;

vij � pj > vij � rjk = i(p) � 0;

a contradiction with the de�nition of i(p): Thus, for all i 2 B, Aijk = 0 and
P

iAijk =

0 2 Sjk(pjk) = f0g. �
Lemma 2 [(= of (2.1)] Assume p 2 P � and A 2 F are compatible. Then, A 2 F �.
Proof of Lemma 2 Let p 2 P � and A 2 F be compatible. We �rst show in Claim 1

that ((p); �(p)) 2 D. Then, we show in Claim 2 that T (A) = T d((p); �(p)), and hence,

by the Strong Duality Theorem, A 2 F �.
Claim 1: ((p); �(p)) 2 D.
Proof of Claim 1 By their de�nitions, i(p) � 0 for all i 2 B and �jk(p) � 0 for

all (j; k) 2 G � S; namely, (D.2) and (D.3) of the (DLP) hold. To show that, for all

(i; j; k) 2 B �G� S,
i(p) + �jk(p) � � ijk (17)

holds, �x i 2 B and assume �rst that i(p) = 0. Then, vij � pj � 0 for all j 2 G: If qjk > 0
then, by (3), � ijk = vij � rjk � pj � rjk � �jk(p): Thus, since i(p) = 0; (17) holds. If

qjk = 0 then, by (3), � ijk = 0: Thus, by de�nition of �jk(p) and since i(p) = 0, (17) holds.

Hence, if i(p) = 0 then (17) holds.

Assume now i(p) > 0. Then, there exists j 2 r>
i (p) such that i(p) = vij � pj > 0: By
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de�nition of r>
i (p); for all (j

0; k0) 2 G� S,

vij � pj + �j0k0(p) � vij0 � pj0 + �j0k0(p)
� vij0 � pj0 + pj0 � rj0k0
= vij0 � rj0k0 :

If qj0k0 > 0 then, by (3), � ij0k0 = vij0 � rj0k0 and hence, vij � pj + �j0k0(p) � � ij0k0. If qj0k0 = 0
then � ij0k0 = 0, and since vij � pj > 0 and �j0k0(p) � 0; vij � pj + �j0k0(p) � � ij0k0 holds as
well. Thus, for all (i; j0; k0) 2 B �G� S, i(p) + �j0k0(p) � � ij0k0 : Hence, (17) holds as well
when i(p) > 0. Thus, ((p); �(p)) 2 D. This ends the proof of Claim 1. �
Claim 2: T (A) = T d((p); �(p)).

Proof of Claim 2: By the Strong Duality and the Complementary Slackness Theorems

it is su¢ cient to show that (CS.1), (CS.2) and (CS.3) hold. Since p 2 P � and A 2 F are

compatible, A(i) 2 Di(p) for every i 2 B, and
P

iAijk 2 Sjk(pj) for every (j; k) 2 G� S.
(CS.1) Assume Aijk > 0: Then,

P
iAijk > 0: By the de�nition of Sjk(pj), pj � rjk: Because

qjk > 0 and (3),

� ijk = vij � rjk = (vij � pj) + (pj � rjk) : (18)

Moreover, by pj � rjk and (15),
�jk(p) = pj � rjk: (19)

Since A(i) 2 Di(p) and
P

k Aijk > 0, j 2 r
�
i (p): Thus,

i (p) = vij � pj: (20)

Then, by (18), (19), and (20), � ijk = i (p) + �jk(p):

(CS.2) Assume
P

jk Aijk � di > 0: Since A(i) 2 Di(p); (D.c) implies that r>
i (p) = ;; and

hence, maxj02Gfvij0 � pj0g � 0: Thus, by (14), i (p) = 0:
(CS.3) Assume

P
iAijk < qjk: Since

P
iAijk 2 Sjk(pj); pj � rjk: Thus, by (15), �jk(p) = 0.

�
The statement of Lemma 2 follows from Claims 1 and 2. �

Lemma 3 [=) of (2.2)] Assume p 2 P �. Then, ((p); �(p)) 2 D�.

Proof of Lemma 3 Assume p 2 P � and let A 2 F be any assignment compati-

ble with p: Thus, the hypothesis of Lemma 2 hold. By Claims 1 and 2 in the proof of

Lemma 2, ((p); �(p)) 2 D and T (A) = T d((p); �(p)). By the Strong Duality Theorem,

((p); �(p)) 2 D�: �
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Lemma 4 [=) of (2.1)] Assume p 2 P � and A 2 F �. Then, p and A are compatible.
Proof of Lemma 4 Follows from Lemmata 1 and 3: �
Lemma 5 [(= of (2.2)] Assume ((p); �(p)) 2 D�. Then, p 2 P �.
Proof of Lemma 5 Let p 2 Rn+ be such that ((p); �(p)) 2 D�. To see that p is

an equilibrium price vector of M let A 2 F � be arbitrary. By Lemma 1, p and A are

compatible. Hence, by de�nition, p 2 P �. �
Theorem 2 holds since condition (2.1) follows from Lemmata 2 and 4, and condition

(2.2) follows from Lemmata 3 and 5. �

Corollary 2 The set of equilibrium price vectors P � is a convex and compact subset of

Rn+.

5 Structure of the Set of Competitive Equilibria

5.1 Previous results

Recall that the assignment game of Shapley and Shubik (1972) is a particular instance of

our model where each seller owns one indivisible object and each buyer wants to buy at

most one object. Since objects owned by di¤erent sellers may be perceived di¤erently by

di¤erent buyers (or they may, indeed, be di¤erent), we can identify the set of goods G with

the set of sellers S. Namely, a market M is an assignment game if di = 1 for all i 2 B;
n = t and for all (j; k) 2 G� S,

qjk =

(
1 if j = k

0 if j 6= k:

Hence, each seller j 2 S has a reservation value rj � 0 of the indivisible object j 2 G that
he owns. Thus, an assignment game can be identi�ed as an (m � t)�matrix a, where for
all (i; j) 2 B � S, aij = maxf0; vij � rjg.
The set of competitive equilibria of a (one-to-one) assignment game a has the following

four properties.

(1) The set of equilibrium price vectors is a non-empty, convex and compact subset of

Rn+.
(2) The set of competitive equilibria is the Cartesian product of the set of equilibrium

price vectors times the set of optimal assignments.
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(3) The set of equilibrium price vectors P � endowed with the partial order � on Rn+
(where p � p0 if and only if pj � p0j for all j 2 G) is a complete lattice.8 In particular,
given p; p0 2 P �; (maxfpj; p0jg)j2G 2 P � and (minfpj; p0jg)j2G 2 P �: Moreover, the set of
equilibrium price vectors contains two extreme vectors pB and pS with the property that

for any equilibrium price vector p 2 P �, pS � p � pB:
(4) The lattice structure of P � is translated into the set of utilities that are attainable at

equilibrium as follows. Given p 2 P � and an optimal assignment � = (�ij)(i;j)2B�S, de�ne
for each i 2 B,

ui(p) =

(
vij � pj if �ij = 1 for some j 2 S
0 otherwise,

and for each j 2 S,

wj(p) =

(
pj � rj if �ij = 1 for some i 2 B
0 otherwise.

It turns out that these utilities are independent of the chosen optimal assignment � (see

Lemma 6 below for a proof of this statement in our more general many-to-many setting).

Thus, we can write them as depending only on the equilibrium price vector p. Then, for all

p; p0 2 P �, the following three statements are equivalent:
(a) pj � p0j for all j 2 G:
(b) ui(p0) � ui(p) for all i 2 B:
(c) wj(p) � wj(p0) for all j 2 S:
Hence, we can de�ne two binary relations �u and �w on P � as follows: for p; p0 2 P �;

p �u p0 () ui(p) � ui(p0) for all i 2 B;

and

p �w p0 () wj(p) � wj(p0) for all j 2 S:

Then, the set P � endowed with the partial order �u (or �w) is a complete lattice. Moreover,
�u and �w are dual in the sense that p �u p0 () p0 �w p.
Consider again our model. We have already seen (in Theorem 1 and Corollary 1) that

property (1) still holds while Milgrom (2010) shows using Topkis (1978)�s theorem that

property (3) holds as well. In this section we will show that property (2) is satis�ed while

8Let X be a non-empty set and let % be a partial order on X: The pair (X;%) is a complete lattice if
for any non-empty subset Y � X; sup%Y and inf%Y belong to Y:
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property (4) only holds partially. In particular, the equivalences between the statements

(a), (b), and (c) above do not hold anymore on P �. One of the reasons is because there

may be goods that are never exchanged in equilibrium; for instance, because the smallest

reservation price rj = mink2S rjk of good j is strictly larger than its largest valuation

vj = maxi2B vij. Then, the price of good j can be equal to any number in the interval

[vj; rj] without a¤ecting the equilibrium property of the full vector. We shrink the set

of equilibrium price vectors by �xing the price of the goods that are never exchanged at

equilibrium at the highest possible one that keeps the equilibrium properties of the full

price vector. We call it the set of restricted equilibrium price vectors and denote it by P ��.

Then, we show in Theorem 3 that P �� has also a complete lattice structure with the natural

order � of vectors.9 Moreover, we show that the equivalence of (a) and (b) above holds

on P �� and that property (c) above is not anymore equivalent to properties (a) and (b) on

the set P ��; i.e., for all p; p0 2 P ��; (a) and (b) are equivalent and each implies (c) but (c)
neither implies (a) nor (b).

Before proceeding we compare these results with similar results obtained in related

models. Camiña (2006) shows that in her model with one seller and unit-demands the set

of core utilities has the following properties: (i) it is non-empty, (ii) it may not coincide

with the set of utilities that are attainable at equilibrium, and (iii) it forms a complete

lattice. In Sotomayor (2007)�s model where each buyer is interested only on buying at most

one unit from each seller, each seller only owns (potentially many) units of one good and

exchanges are binary (i.e., Aijk 2 f0; 1g for all (i; j; k) 2 B�G�S) it is showed that the sets
of agents�utilities attainable at equilibrium have a dual lattice structure with the partial

order � on Rn. In this model, as already described in Sotomayor (1992), an agent payo¤ is
represented by a vector of utilities, each component coming from each of the partnerships

that the agent forms with agents in the other side of the market (a dummy agent is added

to each of the two sets of agents to represent feasible but un�lled partnerships with agents

in the other side of the market). Sotomayor (1999) proves the lattice property of the set of

stable payo¤s after conveniently represent each of them as a vector of an Euclidian space,

whose dimension depends on the speci�c quota of the agent. Sotomayor (2007) shows that

the set of competitive equilibrium payo¤s (notice again that each agent�s payo¤ is a vector

of utilities, not a total payo¤) is a non-empty subset of the set of stable payo¤s (the proof of

9Our proof is direct and it does not use Topkis (1978)�s theorem. In addition, with a few slight mod-

i�cations it can be adapted to prove directly that P � has a complete lattice structure with the order

�.
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its nonemptyness uses the Duality and Complementary Slackness Theorems) and it has the

lattice property (this proof uses Tarski�s theorem). Sotomayor (2002, 2009b) extends her

previous results to a more general model (called the time-sharing assignment game) in which

any two agents from opposite sides of the market may form a partnership, contribute with

an (identical) amount of labor (that may be perfectly divisible) and generate an amount

of income which has to be divided among the two agents. Sotomayor (2009b) shows that,

in the time-sharing assignment game, alternative solution concepts are non-empty (this

is done using again the Duality and Complementary Slackness Theorems) and that these

solution concepts are related by a nested inclusion relationships. Finally, Milgrom (2010)

does not address properties (2) and (4), and complements property (3) by showing, using

Topkis (1978)�s theorem, that in his general setting the set of market-clearing prices is a

non-empty, closed, and convex sublattice (a subset of a lattice that is itself a lattice).

The main contribution of our paper is two-fold. First, it presents a many-to-many

extension of Shapley and Shubik (1972)�s assignment game where a partnership between a

buyer and a seller may involve exchanges of several units of di¤erent goods. Second, it is

also methodological since all our results on this generalized many-to-many assignment game

with more complex partnerships are exclusively based on linear programming arguments.

5.2 Cartesian Product Structure of the Set of Competitive Equi-
libria

We �rst establish that in our model the set of competitive equilibria has a Cartesian product

structure; namely, if (p;A) and (p0; A0) are two competitive equilibria ofM then, (p;A0) and

(p0; A) are also two competitive equilibria of M . This follows immediately from Lemmata

2 and 4 used to prove Theorem 2. We state it as Proposition 4 below.

Proposition 4 Let M be a market. Then, (p;A) is a competitive equilibrium of M if

and only if p 2 P � and A 2 F �.

Proof Assume (p;A) is a competitive equilibrium ofM . By de�nition, p 2 P �. Moreover,
p and A are compatible. By Lemma 2, A 2 F �. Assume p 2 P � and A 2 F �. By Lemma
4, p and A are compatible. Thus, (p;A) is a competitive equilibrium of M: �
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5.3 Sets of Equilibrium Utilities

Let p 2 Rn+ be a price vector and A 2 F a feasible assignment of market M: We de�ne

the utility of buyer i 2 B at the pair (p;A) as the total net gain obtained by i from his

exchanges speci�ed by A at price p. We denote it by ui(p;A); namely,

ui(p;A) =
P

jk(vij � pj) � Aijk:

We de�ne the utility of seller k 2 S at the pair (p;A) as the total net gain obtained by k
from his exchanges speci�ed by A at price p. We denote it by wk(p;A); namely,

wk(p;A) =
P

ij(pj � rjk) � Aijk:

De�ne

G> = fj 2 G j there exists A 2 F � such that Aijk > 0 for some (i; k) 2 B � Sg

as the set of goods that are exchanged at some optimal assignment. For each seller k 2 S,
de�ne

G>k = fj 2 G j there exists A 2 F � such that Aijk > 0 for some i 2 Bg

as the set of goods of which k sells strictly positive amounts at some optimal assignment.

Obviously, G> = [k2SG>k .
Next lemma states that equilibrium utilities are independent of the particular optimal

assignment chosen since they only depend on the equilibrium price vector (which determines

the associated solution of the (DLP)).

Lemma 6 Let p 2 P � be an equilibrium price vector of M and let A 2 F � be an optimal
assignment of M . Then, the following two conditions hold:

(L6.1) For each buyer i 2 B, ui(p;A) = i(p) � di:
(L6.2) For each seller k 2 S, wk(p;A) =

P
j2G>k

(pj � rjk) � qjk:10

Proof of Lemma 6 Let (p;A) 2 P ��F �: Note that p and A are compatible. To prove
(L6.1), �x i 2 B. By de�nition, ui(p;A) =

P
jk(vij � pj) �Aijk: Let (j; k) 2 G�S be given.

If Aijk = 0 then (vij � pj) � Aijk can trivially be written as i(p) � Aijk: If Aijk 6= 0 then by
(D.d); j 2 r�

i (p); which implies that (vij � pj) = i(p); and

ui(p;A) = i(p) � (
P

jk Aijk):

10Observe that wk(p;A) can also be written as
P

j2G �jk(p) � qjk.
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If i(p) = 0 then the statement holds because i(p) � (
P

jk Aijk) = i(p) � di = 0: By (CS.2),
if i(p) 6= 0 then

P
jk Aijk = di: Thus,

ui(p;A) = i(p) � di:

To prove (L6.2), �x k 2 S. By de�nition, wk(p;A) =
P

ij(pj � rjk) � Aijk: Then,P
ij(pj � rjk) � Aijk =

P
j(pj � rjk) � (

P
iAijk):

Since p 2 P �; by (E.S), if (pj � rjk) > 0 then
P

iAijk = qjk: If (pj � rjk) < 0 then,

Sjk(pj) = f0g, and hence, since p and A are compatible,
P

iAijk = 0. Therefore,

wk(p;A) =
P

j2fj02Gjpj0�rj0k�0g
(pj � rjk) � qjk =

P
j2G>k

(pj � rjk) � qjk: (21)

Condition (21) holds because fj0 2 G j qj0k > 0 and pj0 � rj0k > 0g � G>k � fj 2 G j
pj � rjk � 0g: To see that, let j 2 G>k . Hence, there exists �A 2 F � such that �Aijk > 0;

which implies, since p and �A are compatible, pj� rjk � 0: Thus, the second inclusion holds.
To prove the �rst one, assume j 2 fj0 2 G j qj0k > 0 and pj0 � rj0k > 0g. Then, since
p 2 P �, by (E.S),

P
iAijk = qjk: Thus, j 2 G>k : �

By Lemma 6, we can write the utilities of buyers and sellers as functions only of the

equilibrium price vector p; namely, given p 2 P �, we write for each i 2 B and each k 2 S,

ui(p) = i(p) � di (22)

and

wk(p) =
P

j2G>k
(pj � rjk) � qjk: (23)

5.4 The Set of Restricted Equilibrium Price Vectors

We start this subsection with an example that illustrates two important facts. First, it

shows that, in contrast with the Shapley and Shubik (1972)�s assignment game, there are

markets with two equilibrium price vectors p; p0 2 P � with the property that wk(p0) > wk(p)
for all k 2 S while ui(p0) > ui(p) for some i 2 B (the equivalence between statements (b)

and (c) at the beginning of Section 5 does not hold on P �).11 Second, it also shows that

the (incomplete) binary relation � on the set of vectors in Rn+ is not imbedded into the set
11See Example 3 in Sotomayor (1992) for a similar example in the multiple-partners game.
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of attainable equilibrium utilities (the equivalence between statements (a) and (b) at the

beginning of Section 5 does not hold on P �). These two facts will have consequences for

the lattice structures of the set(s) of (restricted) equilibrium price vectors and the sets of

attainable equilibrium utilities that will be analyzed at the end of this subsection.

Example 1 LetM = (B;G; S; V; d; R;Q) be a market whereB = fb1; b2g, G = fg1; g2; g3g,

S = fs1g, V =
 
8 0 2

0 5 3

!
, d = (2; 3), R =

0B@ 1

2

10

1CA, and Q =
0B@ 2

3

1

1CA. It is easy to see
that, for all p3; p03 2 [3; 10], p = (5; 4; p3) and p0 = (7; 2; p03) are two equilibrium price vectors
of M and 14 = w1(p) > w1(p0) = 12: Furthermore, (p) = (3; 1) and (p0) = (1; 3) : Then,

u1(p) = 3 � 2 = 6, u2(p) = 1 � 3 = 3, u1(p0) = 1 � 2 = 2, and u2(p0) = 3 � 3 = 9: Thus,

w1(p) > w1(p
0) and u1(p) > u1(p0) and u2(p0) > u2(p): Moreover, observe that, for all i 2

f1; 2g, ui(7; 2; p3) = ui(7; 2; p03) for all 1 < p3 < p03 � 10 but p = (7; 2; p3) < (7; 2; p03) = p0:
This is because no unit of good 3 is exchanged in any equilibria and hence, the equilibrium

price vector p = (7; 2; p3) is equivalent (in terms of its induced demands and supplies) to

the equilibrium price vector p0 = (7; 2; p03) as long as 1 < p3 < p
0
3 � 10: �

In order to restore the interesting property that the (incomplete) binary relation �
on Rn+ reproduces itself in terms of buyers utilities (in the corresponding space) we have
to eliminate an insubstantial multiplicity of equilibrium prices of the goods that are not

exchanged at any equilibrium assignment. We do it by setting the prices of each non-

exchanged good equal to the highest possible one (keeping the equilibrium property of the

price vector).12 Formally, given an equilibrium price vector p 2 P �, de�ne p = (pj)j2G as
follows:

pj =

(
pj if j 2 G>

pSj if j =2 G>;
(24)

where pSj = sup
p2P �

pj.13 Proposition 5 below says that this distortion does not a¤ect the

12The choice of the highest price is arbitrary. The important fact is to select, for each of these goods,

just one of its potentially many equilibrium prices.

13The vector pS = (pSj )j2G is called the sellers-optimal equilibrium price. Similarly, de�ne for each j 2 G,
pBj = inf

p2P�
pj : The vector pB = (pBj )j2G is called the buyers-optimal equilibrium price. By Milgrom (2010),

the price vectors pS and pB do exist and they are the two extreme equilibrium prices of the complete lattice

(P �;�).
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equilibrium property of the original price vector.

Proposition 5 Let M be a market and let p 2 P �. Then, p 2 P �.

Proof Let A 2 F � be an optimal assignment of M . We will prove that (p;A) is a

competitive equilibrium of M by showing that conditions (E.D) and (E.S) are satis�ed by

p with respect to A:

(E.D) For every i 2 B; A(i) 2 Di(p):

Fix i 2 B. Since A is feasible, (D.a) and (D.b) hold.
To show that (D.c) holds, assume r>

i (p) 6= ;. Then, there exists j 2 r>
i (p) such that

vij � pj > 0. Since either pj = pj or pj = pSj we have that either 0 < vij � pj = vij � pj or
0 < vij� pj = vij� pSj , which implies that either r>

i (p) 6= ; or r>
i (p

S) 6= ;. By hypothesis,
p 2 P � and, by Milgrom (2010), pS 2 P �: Hence, p and pS are both compatible with A.
Thus,

P
jk Aijk = di, which means that (D.c) holds for p.

To show that (D.d) holds, let (i; j) 2 B � G be such that
P

k Aijk > 0: Thus, j 2 G>:
We have to show that j 2 r�

i (p): Since p and p
S are both compatible with A, j 2 r�

i (p)\
r�
i (p

S): By de�nition of r�
i (p),

vij � pj � 0 (25)

and

vij � pj � vij0 � pj0 for every j0 2 G: (26)

By de�nition of r�
i (p

S), vij � pSj � 0 and vij � pSj � vij0 � pSj0 = vij0 �maxp2P � pj0 for every
j0 2 G. We next show that:

vij � pj � 0

and

vij � pj � vij0 � pj0 for every j0 2 G:

Since j 2 G>; pj = pj: Thus, by (25), vij � pj � 0: We distinguish between two cases.
Case 1: j0 2 G>: Then, pj0 = pj0 and

vij � pj = vij � pj by de�nition of pj
� vij0 � pj0 by (26)

= vij0 � pj0 by de�nition of pj0 :

Hence, vij � pj � vij0 � pj0 for every j0 2 G>:
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Case 2: j0 =2 G>: Then, pj0 = pSj0 = maxp2P � pj0 and

vij � pj = vij � pj by de�nition of pj
� vij0 � pj0 by (26)

� vij0 �maxp2P � pj0
= vij0 � pj0 by de�nition of pj0 :

Hence, vij � pj � vij0 � pj0 for every j0 =2 G>:
Thus, j 2 r�

i (p):

(E.S) For every j 2 G,
P

iAijk 2 Sjk(pj):
Assume �rst that j 2 G>: Then, pj = pj and Sjk(pj) = Sjk(pj). Since p and A are

compatible,
P

iAijk 2 Sjk(pj): Thus,
P

iAijk 2 Sjk(pj): Assume now that j =2 G>: Then,
pj = p

S
j and Sjk(pj) = Sjk(p

S
j ). Since p

S and A are compatible,
P

iAijk 2 Sjk(pSj ): Thus,P
iAijk 2 Sjk(pj): �

Proposition 6 shows that the distortion in (24) coincides with the one produced in p by

computing its associated price vector p((p);�(p)) from its dual solution ((p); �(p)).

Proposition 6 For every p 2 P �, p((p);�(p)) = p.

Proof Let p 2 P � be given and let A� 2 F � be any compatible assignment. By de�nition,
for all j 2 G, ~pj � p((p);�(p))j = minfk2Sjqjk>0gf�jk(p) + rjkg:
Assume �rst that j =2 G>. Then,

P
ik A

�
ijk = 0: By (CS.3), �

�
jk = 0 for all k 2 S and

all ��jk such that there exists 
� with the property that (�; ��) 2 D�. Thus, by (2.2),

�jk(p) = 0: Hence, ~pj = minfk2Sjqjk>0g rjk: By Corollary 2 and de�nition of p
S, ~pj � pSj . To

obtain a contradiction, assume ~pj < pSj . Then, there exists k 2 S such that qjk > 0 and

rjk < p
S
j . Since, by Milgrom (2010), P � is a complete lattice, pS 2 P �, (E.S) implies thatP

iA
�
ijk = qjk > 0; a contradiction.

Assume now that j 2 G>. It is immediate to see that, for all p0 2 P �;

G> �
S
i2B
r�
i (p

0) (27)

holds. Next, we show that the following claim holds.

Claim Let p0 2 P � and (i; j) 2 B �G be such that j 2 r�
i (p

0), then vij � p0j = i(p0):
Proof of Claim Since j 2 r�

i (p
0), vij � p0j � 0 and for all j0 2 G, vij � p0j � vij0 � p0j0. If

vij � p0j = 0; then vij0 � p0j0 � 0 for all j0 2 G: Thus, i(p0) = 0 = vij � p0j: If vij � p0j > 0,
then j 2 r>

i (p
0). Thus, i(p

0) = vij � p0j: �
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By (D.1), for all (; �) 2 D� and all (i; j; k) 2 B�G�S, i+ �jk � � ijk. Thus, by (3),
for all i 2 B and all (j; k) such that qjk > 0; i + �jk � vij � rjk: Hence,

�jk + rjk � vij � i: (28)

Since j 2 G>; (27) implies that there exists (i0; k0) 2 B�S such that qjk0 > 0; A�i0jk0 > 0 and
j 2 r�

i (p
0). Thus, by (28) applied to ((p0); �(p0)) and i0 2 B, �jk(p0) + rjk � vi0j � i0(p0)

for all k 2 S such that qjk > 0. By the claim above, �jk(p0)+ rjk � vi0j�i0(p0) = p0j: Thus,

min
fk2Sjqjk>0g

f�jk(p0) + rjkg � p0j: (29)

Moreover, by (CS.1), i0(p
0) + �jk0(p

0) = � i0jk0 = vi0j � rjk0 : Thus, �jk0(p0) + rjk0 = vi0j �
i0(p

0); and by the claim above, �jk0(p0) + rjk0 = vi0j � i0(p
0) = p0j: Thus, by (29),

minfk2Sjqjk>0gf�jk(p0) + rjkg = p0j, which implies that p
0
j = pj: Hence, p

((p);�(p)) = p:

�

Given a market M , we can de�ne the set of restricted equilibrium price vectors P �� as

those that are obtained from equilibrium price vectors after setting the price of the goods

that are not exchanged at any optimal assignment equal to their sellers-optimal equilibrium

price. Namely,

P �� = fp 2 P � j pj = pSj for every j =2 G>g:

Theorem 3 below states that the set P �� has a complete lattice structure with the natural

order � on Rn+.

Theorem 3 The pair (P ��;�) is a complete lattice.

Proof Let Z � P �� be a non-empty subset of restricted equilibrium price vectors of M .

De�ne pB (Z) = (pBj (Z))j2G 2 Rn+ and pS (Z) = (pSj (Z))j2G 2 Rn+ as follows: for each
j 2 G, let

pBj (Z) = inf
p2Z

pj and pSj (Z) = sup
p2Z

pj: (30)

Lemma 7 Let M be a market. Then, for all ; 6= Z � P ��, pB (Z) ; pS (Z) 2 P ��.

Proof of lemma 7 Let A 2 F � be an optimal assignment of M . Given a non empty
subset Z � P ��, we will �rst prove that pB (Z) is an equilibrium price vector of M by

showing that (E.D) and (E.S) are satis�ed by pB (Z) with respect to A. The proof that

pS(Z) is also an equilibrium price vector of M uses similar arguments and therefore it is

omitted.
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(E.D) for pS (Z): For every i 2 B; A(i) 2 Di(p
S (Z)):

Fix i 2 B. Since A is feasible, (D.a) and (D.b) hold.
To show that (D.c) holds, assume r>

i (p
S (Z)) 6= ;. Then, there exists j 2 r>

i (p
S (Z))

such that vij � pSj (Z) > 0. Since pSj (Z) = supp2Z pj; we have that for every p 2 Z,

0 < vij�pSj (Z) � vij�pj, which implies that r>
i (p) 6= ;: Because p and A are compatible,P

jk Aijk = di: Thus, (D.c) holds for p
S (Z).

To show that (D.d) holds, let j 2 G be such that
P

k Aijk > 0: We have to show that

j 2 r�
i (p

S (Z)). Since for all p 2 Z, p and A are compatible, j 2 r�
i (p) for every p 2 Z:

By de�nition of r�
i (p), vij � pj � 0 and vij � pj � vij0 � pj0 for every j0 2 G. For every

j0 2 G,
vij0 � pj0 � vij0 � sup

p̂2Z
p̂j0 (31)

holds for all p 2 Z. Let fpmgm2N be a sequence such that, for all m 2 N, pm 2 Z and

fpmj gm2N ! supp2Z pj: By (31), vij0 � pmj0 � vij0 � supp2Z pj0 for all m 2 N. Since j 2 r�
i (p)

for every p 2 Z; j 2 r�
i (p

m) for every m 2 N. Thus, vij � pmj � vij0 � pmj0 for all m 2 N.
Thus, vij � pmj � vij0 � supp2Z pj0 for all m 2 N. Hence, vij � supp2Z pj � vij0 � supp2Z pj0 :
Thus, j 2 r�

i (p
S (Z)):

(E.S) for pS (Z): For every (j; k) 2 G� S,
P

iAijk 2 Sjk(pSj (Z)):
Fix (j; k) 2 G � S. If pSj (Z) < rjk then, for all p 2 Z, pj � pSj (Z) < rjk. Thus,P

iAijk = 0 2 Sjk(pj): Thus,
P

iAijk 2 f0g = Sjk(pSj (Z)): If pSj (Z) > rjk; let fpmgm2N be
a sequence such that, for all m 2 N, pm 2 Z and fpmj gm2N ! supp2Z pj: Then, there exists

�m 2 N such that for all m > �m; pmj > rjk. Thus,
P

iAijk 2 fqjkg = Sjk(pmj ) for all m > �m:

Hence,
P

iAijk 2 fqjkg = Sjk(pSj (Z)):
We now prove that indeed pB(Z); pS(Z) 2 P ��: That is, that pBj (Z) = pSj and pSj (Z) = pSj

for every j =2 G>. Let j =2 G>: Since pBj (Z) = infp2Z pj and p 2 Z � P �� implies pj = pSj ;
infp2Z pj = p

S
j : Thus, p

B
j (Z) = p

S
j : Hence, p

B(Z) 2 P ��: Similarly, pS(Z) 2 P ��: �

By Lemma 7 above we can write, for each ; 6= Z � P �� and j 2 G, pSj (Z) = maxp2Z pj
and pBj (Z) = minp2Z pj. In particular, p

S
j (P

��) = maxp2P �� pj for all j 2 G and pBj (P ��) =
minp2P �� pj for all j 2 G> and pBj = pSj for all j =2 G>:
To show that (P ��;�) is a lattice let p; p0 2 P �� and set Z = fp; p0g, p _ p0 � pS(Z);

and p^ p0 � pB(Z): By Lemma 7, p_ p0 2 P �� and p^ p0 2 P ��. Moreover, it is immediate
to check that _ and ^ are idempotent, commutative, associative, and absorbing binary
operations on P ��. Thus, by Birkho¤ (1979), (P ��;�) is a lattice. To prove that it is
complete, consider any ; 6= Z � P ��. By de�nition, lub�Z = pS(Z) and llb�Z = pB(Z),
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where lub and llb denote the least upper bound and the largest lower bound, respectively.

By Lemma 7, pS(Z); pB(Z) 2 P ��. Thus, (P ��;�) is a complete lattice. �

Our objective in the remaining of this subsection is to show how the complete lattice

structure with the natural order � on Rn+ (and on P � and P ��) translates into the set of
of agents�utilities that are attainable at equilibrium. The fact that the lattice structure

of the set of equilibrium price vectors is inherited in a dual way by the sets of equilibrium

utilities of buyers and sellers is an important property because it says that there is a con�ict

of interests between the two sides of the market (and unanimity in each of the sides) with

respect to two comparable equilibrium price vectors.

De�ne the partial orders �u and �w on P � as follows: for any pair p; p0 2 P �;

p �u p0 if and only if ui(p) � ui(p0) for every i 2 B

and

p �w p0 if and only if wk(p) � wk(p0) for every k 2 S:

Example 1 has showed that we may have p; p0 2 P � with the property that p 6= p0, but
ui(p) = ui(p

0) for all i 2 B; i.e., the binary relation �u is not a partial order on P � because
it is not antisymmetric since p �u p0, p0 �u p and p 6= p0 hold. Hence, the lattice structure
of the set P � with the binary relation � is not inherited by the set of utilities of buyers

that are attainable at equilibrium. However, next proposition says that the partial order

� on the set of restricted equilibrium price vectors translates into the set of utilities of the

buyers that are attainable at equilibrium (i.e., the statements (a) and (b) at the beginning

of Section 5 are equivalent on this subset of P �). Formally,

Proposition 7 Let p; p0 2 P �� be two restricted equilibrium price vectors of market M .

Then,

ui(p) � ui(p0) for every i 2 B if and only if p0j � pj for every j 2 G:

Proof It follows from the de�nition of P �� and Lemma 8 below. �

Lemma 8 Let p; p0 2 P � be two equilibrium price vectors of market M . Then,

ui(p) � ui(p0) for every i 2 B if and only if p0j � pj for every j 2 G>:

Proof of Lemma 8 Let p; p0 2 P �.
=)) Assume ui(p) � ui(p

0) for every i 2 B: By (22), i(p) � i(p
0) for every i 2 B:

By part (2.2), ((p); �(p)) 2 D� and ((p0); �(p0)) 2 D�: Assume j 2 G> and let k 2 S be
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such that j 2 G>k . Then, there exist A 2 F � and i 2 B such that Aijk > 0: Thus, and since
(p;A) and (p0; A) are competitive equilibria ofM;

P
i0 Ai0jk 2 Sjk(pj) and

P
i0 Ai0jk 2 Sjk(p0j)

imply that

pj � rjk and p0j � rjk: (32)

By (CS.1),

i(p) + �jk(p)� � ijk = 0 (33)

and

i(p
0) + �jk(p

0)� � ijk = 0: (34)

Thus,

i(p) + �jk(p) = i(p
0) + �jk(p

0):

Since i(p) � i(p0) for every i, �jk(p0) � �jk(p) holds. By de�nition of �jk(p0) and �jk(p),
and since (32) holds, �jk(p0) = p0j � rjk � pj � rjk = �jk(p): Thus, p0j � pj:
(=) Assume p0j � pj for every j 2 G>: Hence, for every i 2 B and every j 2 G>;

vij � pj � vij � p0j: (35)

Fix i 2 B and assume r>
i (p

0) 6= ;: Then, there exists j0 2 G> such that vij0 � p0j0 > 0: By
(35), vij0�pj0 > 0; which implies that r>

i (p) 6= ;: Hence, if r>
i (p

0) 6= ; there exists j0 2 G>

such that

i(p
0) = vij0 � p0j0 � vij0 � pj0 = i(p):

Thus, by (22), ui(p) � ui(p
0). Assume now that r>

i (p
0) = ;: Then, since by de�nition

0 � i(p); i(p
0) = 0 � i(p): Hence, by (22), ui(p) � ui(p

0). Thus, for every i 2 B,

ui(p) � ui(p0). �

Consider now the restriction of the partial order �u on the set P ��. Then, P �� is a
complete lattice with �u : Formally,

Theorem 4 The pair (P ��;�u) is a complete lattice.

Proof It follows from Theorem 3 and Proposition 7. �

Next proposition shows that the con�ict of interests between the two sides of the market

on the set of equilibrium price vectors holds partially in our general model (statement (b)

in the beginning of Section 5 implies statement (c) on P �); namely, if buyers unanimously

consider the equilibrium price vector p as being at least as good as equilibrium price vector
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price p0 then all sellers consider p0 as being at least as good as p (remember that Example

1 shows that the converse does not hold).

Proposition 8 Let p; p0 2 P � be two equilibrium price vectors of market M such that

ui(p) � ui(p0) for all i 2 B: Then, wk(p0) � wk(p) for all k 2 S.

Proof Let p; p0 2 P � and assume that ui(p) � ui(p
0) for every i 2 B. By Lemma 8,

p0j � pj for every j 2 G>: Fix k 2 S. Then, p0j � rjk � pj � rjk for every j 2 G>k : Thus, by
(23), wk(p0) � wk(p). �

Proposition 9 states that utilities associated to the two extreme equilibrium price vectors

pB and pS are extreme and opposite utilities.

Proposition 9 Let M be a market. Then, for every p 2 P �; the following properties
hold.

(9.1) For every i 2 B, ui(pB) � ui(p) � ui(pS).
(9.2) For every k 2 S, wk(pS) � wk(p) � wk(pB).

Proof Consider any p 2 P �. By their de�nitions, pBj � pj � pSj for all j 2 G: In

particular, these inequalities hold for all j 2 G>. By Lemma 8, ui(pB) � ui(p) � ui(p
S)

for all i 2 B: Thus, (9.1) holds. By Proposition 8, wk(pB) � wk(p) � wk(pS) for all k 2 S.
Thus, (9.2) holds. �

Consider again Example 1. Take p = (3; 2; 10) and p0 = (3
2
; 3; 10) and observe that

p; p0 2 P �� and w1(p) = w1(p
0) = 4: Hence, p �w p0, p0 �w p, and p 6= p0. Thus, the

binary relation �w is not a partial order on P �� because it is not antisymmetric. Hence,
the set P �� does not have a lattice structure with the binary relation �w. Observe that
this is a direct consequence of the fact that in our model sellers may own units of di¤erent

goods. Therefore, two unrelated equilibrium price vectors in P �� may give the same utility

to a seller because the losses in revenues from selling one good with a lower price are

compensated with the gains from selling another good with a higher price. Obviously, this

can not occur whenever each seller only owns units of a unique good, as in Sotomayor (2007

and 2009b).
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