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1. INTRODUCTION

There are many situations where a group of agents must share a task or
Ža good, including dividing up assets among creditors in a bankruptcy e.g.,

.Aumann and Maschler, 1985 , sharing the cost of a public project or the
Žsurplus of a joint venture e.g., Moulin, 1985a, 1985b, 1987, and Young,

. Ž1987 , and rationing goods traded at fixed prices e.g., Benassy, 1982;
.Barbera and Jackson, 1995 . In allotting the task or good there are several`

issues which are of interest, such as efficiency, equity, and incentive
compatibility.1

We examine sharing problems when individuals have single-peaked
preferences over their desired share. Consider, for instance, a partnership
investing in a project, where the benefits from the project are paid out in
proportion to the amount each partner invests. Suppose that each partner
has an ideal amount that they want to invest and has preferences that are
single peaked about that amount. The total of these ideal investment
amounts may add up to more or less than the total amount required to
undertake the project, and so partners may have to invest more or less
than their ideal amounts. There are many different ways in which one can

Ž .decide how much each partner will be allowed or required to invest. One
could simply require that each partner make an equal investment. This
solution is not very satisfactory, since it is Pareto inefficient in cases where
some partners wish to invest more than the equal amount and other
partners would like to invest less than that amount. A more sophisticated
method for deciding on the investment levels is by the uniform rule. The
uniform rule may be thought of as starting from the equal amounts
solution, but then correcting it to be efficient. To illustrate the uniform
rule, suppose that the total of the partners’ ideal investment levels exceeds
the total required to undertake the project.2 If there are any partners who
wish to invest less than an equal share, let them invest exactly their ideal
amounts. This frees up additional investment opportunities for the remain-
ing partners. Now divide this remaining total equally among the remaining
partners. If any of them desire less than this equal amount, then let them
have their ideal investment levels. Continue iterating this procedure until
all of the remaining partners’ ideal investment levels are at least as high as
the equal shares of the remaining total. These partners each invest this

1 Ž .See Moulin and Thomson 1995 for a recent survey of axiomatic approaches to resource
allocation.

2 The case where the total is less than or equal to the required amount is analogous. A
complete definition is provided in Section 2.
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equal share. The uniform rule has many nice characteristics: it is efficient,
strategy-proof, anonymous, and envy-free,3 and is consistent, individually

Ž .rational from equal division, and satisfies one-sided replacement-domina-
tion, and population and resource monotonicity conditions.4 All of these
properties seem to make it an overwhelming candidate to be the ‘‘ideal’’
allotment rule.

However, the anonymity and envy-free properties of the uniform rule
make it an inappropriate rule when there are asymmetries among the
agents that one wishes to respect.5 Often partnerships are repeated
relationships, where based on historical contributions or tenure some
partners may be considered more senior than others. In other applications,
other considerations may lead some agents to have natural claims to
minimal or maximal allotments. For instance, when sharing a task, some
participants may be younger and one might wish to limit their inputs.
There are allotment rules which respect such seniority or asymmetry, while
still respecting efficiency and strategy proofness. In the case of the part-
nership, a simple such rule is a queuing rule where partners are lined up

Ž .according to seniority see Benassy, 1982 . The most senior partners are
allowed to choose their investment levels first. The second most senior
partners choose next, and so forth. If at some level there is a need to
ration, it can be done uniformly. An alternative method which is based on
seniority or other asymmetries, and still respects efficiency and strategy-
proofness, is to entitle partners with different guaranteed levels of invest-

Žment. The uniform rule entitles partners to equal shares: what they obtain
.is always at least as good as an equal share. These shares can have

guaranteed minimum and maximum levels. A partner would end up with a
share outside of this limit only if the total of the ideal amounts permits it
and he or she desires it. Feasibility imposes restrictions on how one can
choose these minimal and maximal levels across agents, as described in our
theorems. Note that such rules, when coupled with existing asymmetries,
can result in more equitable allotments than a rule which treats all agents
symmetrically in the strong senses implied by anonymity or envy-freeness.

3 Ž . Ž .See the characterizations in Sprumont 1991 . Ching 1992, 1994 extends Sprumont’s
characterizations to a domain of single plateaued preferences and weakens the envy-free and
anonymity conditions to an equal treatment of equals property.

4 Consistency requires that a rule’s recommendations are unaltered if it is reapplied to the
remaining pie after some agents leave with their allotments. The replacement-domination
condition requires that agents’ welfares all be effected in the same direction as some
characteristic of the economy changes, while the monotonicity conditions make similar
requirements on the allotments. Characterizations involving these conditions are given by

Ž .Thomson 1992, 1994a, 1994b, 1995 .
5 Ž .Thomson 1994a provides some other criticisms of the uniform rule.
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In this paper we characterize a class of allotment rules that are
strategy-proof, efficient, and satisfy replacement monotonicity. Strategy-
proofness is quite appealing from the point of view of decentralization; but
it is known to be a strong requirement on any collective decision making

Ž .rule Gibbard 1973; Satterthwaite, 1975 . Yet, under appropriate domain
restrictions, nontrivial strategy-proof mechanisms are known to exist. An
interesting example for the case of one-dimensional decisions is given by

Žthe generalized majority rules see Moulin, 1980, and Barbera and Jack-`
.son, 1994 . For the case of two agents, the generalized majority rules and

strategy-proof allotment rules are closely related, as we shall describe. This
close relationship is due to the fact that with two agents, an agent’s
preferences can be expressed as preferences over the other agent’s allot-
ment since this uniquely determines his or her own allotment. With more
than two agents, however, this relationship is no longer true and so the
allotment setting is complicated by the fact that the alternatives are
multidimensional.

The replacement monotonicity condition applies to situations where one
individual’s preferences change, which may lead to a change in his or her
allotment. In such a situation, there will be a compensating change in the
remaining agents’ allotments. The replacement monotonicity requires that
no two of the remaining agents’ allotments move in opposite directions.
One might classify this as a very basic symmetry condition. The idea is that
an increase in one individual’s allotment decreases the amount left to be
alloted among the remaining agents. The restriction is that none of the
remaining agents’ allotments can increase as a result. This does not mean
that they have to be affected in a similar manner}some of the remaining
allotments might not change at all. It is simply that none of the remaining
agents allotments should increase as a result of this change.6 This condi-
tion does not make any requirements on the levels or rates of change of
allotments. This is an important distinction from conditions such as equal
treatment of equals, anonymity, and envy-freeness. This allows us to

Žcapture rules of the type informally described above thus avoiding possi-
. Ž .ble conflicts with equity , while still imposing enough order or fairness to

clearly define a class of rules.
The paper proceeds as follows. After this introduction, Section 2 pro-

Ž .vides notation, definitions, and Sprumont’s 1991 result in a form which
will help us to describe our procedures. In Section 3 we provide a full

6 Much of the normative justification for this condition relies on single-peaked preferences
and efficiency. This means that the condition is equivalent to a statement in terms of the
welfare of the remaining agents. It should not be that some of them are made better off,

Ž .while others are made worse off. This condition one-sided replacement-domination is
Ž .defined and discussed by Thomson 1992 .
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characterization of strategy-proof and efficient allotment rules and exam-
ples which illustrate some unappealing aspects of the rules which are
admitted if no further conditions are imposed. In Section 4 we introduce
and characterize a new subclass of strategy-proof and efficient allotment
rules, which can be thought of as natural extensions of the procedure
which underlies the uniform rule. Section 5 concludes.

2. NOTATION, DEFINITIONS, AND THE UNIFORM RULE

� 4N s 1, . . . , n is a finite set of agents.
� w xn 4Allotments are n-tuples a in the set A s a g 0, 1 ¬ Ý a s 1 .ig N i

An agent’s preferences over allotments are selfish and are thus identi-
w xfied with a complete pre-ordering on 0, 1 . Given two allotments a and a9,

agent i prefers a to a9 if and only if he or she prefers a to aX . Preferencesi i
are also assumed to be continuous, and will therefore always be repre-
sentable by continuous utility functions. These are denoted u , uX , u , etc.i i j

Finally, preferences are assumed to be single peaked with a unique ideal
point. That is, if u represents the preferences of i g N, then there existsi

w x w xx* g 0, 1 such that for any y, z g 0, 1

x* - y - z « u x* ) u y ) u z ,Ž . Ž . Ž .i i i

and

z - y - x* « u x* ) u y ) u z .Ž . Ž . Ž .i i i

Ž .We call x* the peak of u and denote it by x* u . Let S denote the set ofi i
all continuous utility functions representing single-peaked preferences on
w x0, 1 .

Preference profiles are given by n-tuples of utility functions. They are
Ž .denoted u, u9, etc., with u representing the n y 1 -tuple obtained fromyi

Ž .u by deleting u and u , ¨ representing the n-tuple obtained from u byi yi i
substituting ¨ for u .i i

An allotment rule associates a vector of shares with each preference
n w xnprofile. It is thus a function f : S ª 0, 1 satisfying feasibility:

f u s 1 for all u g Sn .Ž .Ý i
igN

We consider only single valued rules, as opposed to correspondences.
A standard requirement on allotment rules is efficiency: the selected

allotment should be Pareto efficient at each preference profile. It is easy to
check that when coupled with the assumption that preferences are single-
peaked, the efficiency requirement is equivalent to requiring that at each
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u g Sn:

x* u F 1 « x* u F f u ; i g NŽ . Ž . Ž .Ý i i i
igN

and

x* u G 1 « x* u G f u ; i g N .Ž . Ž . Ž .Ý i i i
igN

Another basic requirement of allotment rules is strategy-proofness:

u f u G u f u , ¨ ; i g N , u g Sn , and ¨ g S.Ž . Ž .Ž . Ž .i i i i yi i i

The virtue of strategy-proofness is that it guarantees that agents will have
no incentive to manipulate the allotments. It implies that agents will
voluntarily declare their true preferences when asked, which establishes
the desired connection between individual preferences and allotments, as
expressed by the rule f.

A third property of allotment rules is anonymity: for all permutations p
Ž . n Ž p . Ž .of N p is a function from N onto N and u g S , f u s f u wherep Ž i. i

p Ž .y1 y1u s u , . . . , u . Anonymity implies an equal treatment of equalsp Ž1. p Žn.
property which is sometimes desirable: agents with identical preferences
are treated identically.7 As we argued in the Introduction, it need not be
desirable in cases where different agents have different entitlements,

Ž .rights, or endowments. Sprumont 1991 has provided a full characteriza-
tion of efficient, strategy-proof, and anonymous allotment rules. It is our
purpose to extend his results to the nonanonymous case. Before we do, it
is helpful to present Sprumont’s main result.

The uniform allotment rule f *, is defined by

min x* u , l u if Ý x* u G 1,Ž . Ž . Ž .i ig N iUf u sŽ .i ½ max x* u , m u if Ý x* u F 1,Ž . Ž . Ž .i ig N i

Ž . w Ž . Ž .x Ž .where l u solves Ý min x* u , l u s 1, and m u solvesi g N i
w Ž . Ž .xÝ max x* u , m u s 1.ig N i

Ž .THEOREM Sprumont . An allotment rule is efficient, anonymous, and
strategy-proof, if and only if it is the uniform rule.

In order to begin to extend the characterization to the nonanonymous
case, let us look at the case of two individuals, which does not capture all
of the features of the problem but gives us some interesting hints. With

7 Ž .See Ching 1994 for more on the equal treatment of equals property and its role in
characterizing the uniform rule.
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two agents, the allotment is fully described by a , since a s 1 y a .1 2 1
Hence, the preferences of agent 2 can be expressed as preferences on a1

Ž . Ž .as well, by letting u a s u 1 y a . Clearly, u is continuous and single˜ ˜2 1 2 1 2
peaked whenever u is. The allotment problem is now reduced to choosing2

w xa single point in 0, 1 when both agents have preferences which are single
Žpeaked over the same variable. It is then known Moulin, 1980; Barberà

.and Jackson, 1994 that the only strategy-proof efficient and anonymous
rule is the one which chooses the median among the ideal points of the

Žagents and a third ‘‘phantom’’ voter at 1r2. We leave it to the reader to
.check that this is indeed equivalent to the uniform rule, given n s 2 . It is

interesting to note that any other median voter rule, with the phantom at
w xany point in p g 0, 1 , is also strategy-proof and efficient. The point p

plays a role similar to that of a guaranteed level, since it suffices for either
of the two agents to propose p for this to become agent 1’s share. Thus,
agent 1 can guarantee himself p and agent 2 can guarantee herself 1 y p.

There are, in fact, more complex two-person strategy-proof and efficient
rules, and they correspond to those described by Moulin’s theorem. As

Ž .shown in Barbera and Jackson 1994 , such rules depend only on the ideal`
U Žpoints of the agents. Let x represent the ideal point of u agent 2’s˜2 2

.preference expressed in terms of a . Fix 0 F p F p F 1. Two-person1 1 2
strategy-proof and efficient rules are of the following form:

xU if p F xU F p¡ 1 1 1 2
U U UU U ~ w xmin max x , x , p if x - pŽ .f x , x sŽ . 1 2 1 1 11 2
U U U¢ w xmax min x , x , p if x ) pŽ .1 2 2 1 2

The case where p s p corresponds to the simple median voter rule,1 2
while the dictatorial rule corresponds to the case where p s 0 and1
p s 1. A symmetric formula can be written by interchanging the roles of2
agents 1 and 2.

The above characterization for two agents gives us a hint toward the
extension to n G 3. An agent is offered an interval of values. If one of the
values is accepted, the agent is allotted that value. Otherwise we proceed
to a next step, in which a median allotment is chosen, with the guarantee
that the agent is not penalized for having let the previous opportunity go
by.

Let us take a last look at the uniform rule through an example with
U 3 U 5 U 2 U 6n s 5 agents with ideal points x s , x s , x s , x s , and1 2 3 420 20 20 20

U 14x s .5 20

As described loosely in the Introduction, the uniform rule can be
Ž .reached through the following algorithm see Sonmez, 1994 :¨
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Ž .Step 1. Determine whether Ý x* u equals, exceeds, or falls shortig N i
Ž .of 1. If Ý x* u s 1, then allot shares equal to the ideal points. Ifig N i

Ž .Ý x* u ) 1, allot their ideal points to those agents who demand no moreig N i
Ž .than 1rn. If Ý x* u - 1, allot their ideal points to those agents whoig N i

demand at least 1rn.

Ž .In our case Ý x* u ) 1, and agents 1 and 3’s ideal points are lessig N i
1 3 2than . Thus a s and a s .1 35 20 20

Step 2. Determine the remaining number of agents to be allotted and the
remaining share to be allotted. Say there are k agents and an amount s to be
shared. Perform the same procedure as in Step 1, letting s replace 1 and
considering only the k agents. Iterate on this step until all of the k9 remaining

Ž .agents ha¨e ideal points exceeding respectï ely, falling short of s9rk9.
15 5In our case, k s 3 and s s . Agent 2 is allotted a s . There are220 20

10now k9 s 2 agents remaining with s9 s . Each has an ideal point which20
5exceeds s9rk9 s .20

Step 3. Allot the remaining k9 agents s9rk9 each.
5In our case, a s a s .4 5 20

3 5 2 5 5Ž .We conclude that agents are allotted the shares , , , , , which20 20 20 20 20
5 1Ž .corresponds to the outcome of the uniform rule with l u s s .20 4

The above descriptions suggests a number of possible ways to extend an
allotment rule to drop anonymity:

Ž .1 Rather than have 1rn as a starting reference point, choose any
collection of shares such that Ý q s 1.ig N i

Ž .2 Rather than having the same reference point for the cases of
Ž . Ž .Ý x* u - 1 and Ý x* u ) 1, choose different reference pointsig N i ig N i

q L and q H.i i

Ž .3 Let the reference levels depend on the share remaining in each
Žiteration of Step 2 with some qualifications on that dependence, in order

.to preserve strategy-proofness .

The above remarks give us ideas concerning some of the ways in which
we can alter the uniform rule and still retain strategy-proofness and
efficiency. The characterization in the next section shows us all of the
ways.

3. STRATEGY-PROOF AND EFFICIENT
ALLOTMENT RULES

Ž .Lemma 2 in Sprumont 1991 provides the basis for a characterization of
all strategy-proof and efficient allotment rules. We provide this characteri-
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zation below. As we shall see, however, this class is very large and contains
some unattractive rules. The class has some of the features discussed at
the end of the last section, but also includes rules where the reference

Ž .points or guaranteed levels can depend on u in almost arbitrary ways.
This makes it impossible to describe a simple algorithm which results in
these rules. We narrow the class to be more manageable in Section 4.

An allotment rule f is strategy-proof and efficient if and only if for each
ny1 w x ny1 w x Ž .i there exists a : S ª 0, 1 and b : S ª 0, 1 , such that a u Fi i i yi

Ž .b u andi yi

min x* u , b u s 1 for all u such that x* u ) 1,Ž . Ž . Ž .Ý Ýi i yi i
igN igN

max x* u , a u s 1 for all u such that x* u F 1,Ž . Ž . Ž .Ý Ýi i yi i
igN igN

and

¡min x* u , b u if x* u ) 1,Ž . Ž . Ž .Ýi i yi i
igN~f u sŽ .i max x* u , a u if x* u F 1.Ž . Ž . Ž .Ýi i yi i¢
igN

ŽThe proof of this characterization follows easily from Lemmas 1 and 2
Ž . .in Sprumont 1991 .

The above characterization, although it provides a functional form for
all strategy-proof and efficient allotment rules, does not provide us with
much insight into such rules. That is, it does not provide an understanding
of an algorithm or procedure which underlies such an allotment rule. The
difficulty stems from the fact that there are an enormous number of quite
varied strategy-proof and efficient allotment rules. In particular, the choices

Ž . Ž .of the functions a u and b u can be made in many different ways,i yi i yi
some of which are normatively unappealing. Although we desire allotment
rules which allow for asymmetric treatment of the agents, the class of all
strategy-proof and efficient rules admits some questionable rules. The
following examples illustrate such rules and provide suggestions for a
normatively appealing subclass.

EXAMPLE 1. Consider an allotment problem with three agents and the
allotment rule which is defined as follows.

Ž .Agent 1 receives her ideal point x* u .1
Ž .If x* u is a rational number, then agent 2 receives his most preferred1

w Ž .xpoint from 0, 1 y x* u and 3 gets the remainder; or1
Ž .If x* u is an irrational number, then agent 3 receives her most1

w Ž .xpreferred point from 0, 1 y x* u and 2 gets the remainder.1
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This rule is strategy-proof and efficient. This rule also makes it clear
that it will be difficult to find an easy step-by-step procedure which
captures all strategy-proof and efficient rules. Note that in addition to
strategy-proofness and efficiency, the above described rule is coalitionally
strategy-proof, depends only on agents’ ideal points, is nonbossy, and is
such that f is continuous in u for each i. One unappealing nature of thei i
example is that a slight change in agent 1’s allotment can change which of
agents 2 and 3 gets to choose next, and thus can dramatically increase or
decrease their respective allotments. Thus, the rule is not fully continuous
in u.8

As we shall see in the following example, one can find rules which are
similar in flavor to the one in Example 1 but are fully continuous.

EXAMPLE 2. Consider an allotment problem with three agents and the
allotment rule which is defined as follows.

Ž .Agent 1 receives her ideal point x* u .1
Ž . Ž .w Ž .xIf x* u F x* u 1 y x* u then agent 2 receives his ideal point2 1 1

Ž .x* u with agent 3 getting the remainder.2
Ž . Ž .w Ž .xIf x* u G x* u 1 y x* u then agent 2 receives median2 1 1

w Ž . Ž .w Ž .x Ž . Ž .xx* u , x* u 1 y x* u , 1 y x* u y x* u , with agent 3 getting the2 1 1 1 3
remainder.

In addition to being coalitionally strategy-proof, nonbossy, and efficient,
the rule described in Example 2 is fully continuous. The part of the rule

Ž Ž ..which is arbitrary is the manner in which the remainder 1 y x* u is1
split between agents 2 and 3. This split depends in a nonmonotonic way on
the choice of agent 1. The rule is such that agent 2 gets to choose from

Ž .some part of 1 y x* u and is rationed if he wants more than that part.1
Ž .However, the relatï e size of that part depends on x* u . Here, sometimes1

when we increase the desired allotment of agent 1, both of the remaining
allotments decrease, while at other profiles when we increase the desired
allotment of agent 1, agent 2 gets a larger allotment and agent 3 gets a
smaller allotment.9

In a rule such as the one described in Example 2, we can think of agent
1 taking an allotment and then leaving the rest for the remaining two
agents. Thus the remaining allotment problem is simply a two person
allotment problem, but with a varying sized pie. It seems normatively

Ž .appealing to suggest that as the size of the pie as left by agent 1 increases

8 Ž .Sprumont 1991 makes use of continuity in his proofs, but the condition he refers to only
requires f ’s continuity in u for each i.i i

9 Ž . Ž . Ž .For example, fix x* u s 1 and x* u s 1. If x* u s 1r4, then agent 2’s allotment is2 3 1
Ž . Ž .3r16. If x* u s 1r2, then agent 2’s allotment is 4r16. If x* u s 3r4, then agent 2’s1 1

allotment is 3r16.
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neither of the remaining two agents’ allotments should decrease. This
condition is violated in Example 2. This replacement monotonicity condi-
tion is defined more carefully in the next section and used in our main
characterization.

4. SEQUENTIAL ALLOTMENT RULES

In this section, we characterize a collection of rules which are strategy-
proof and efficient, and we allow for asymmetries among the treatment of
agents. The characterization involves a third condition, replacement mono-
tonicity. This rules out the troublesome examples described in Section 3
and brings us back to procedures which are more clearly variations on the
procedure described in Section 2.

Replacement Monotonicity. An allotment rule is replacement monotonic
if for all u g Sn, i g N, and ¨ g S,i

f u F f u , ¨ « f u G f u , ¨ ; j / i .Ž . Ž . Ž . Ž .i i yi i j j yi i

Replacement monotonicity states that if a change in one individual’s
Žpreferences results in that individual receiving at least as large respec-

.tively, small an allotment as he received before, then all other individuals’
Ž .allotments are no larger respectively, smaller than before. Note that

replacement monotonicity implies the nonbossy condition of Satterthwaite
Ž . Žw Ž . Ž .x Ž . Ž ..and Sonnenschein 1981 f u s f u , ¨ « f u s f u , ¨ .i i yi i yi i

Replacement monotonicity is closely related to the one-sided replace-
Ž . 10ment-domination condition of Thomson 1992 . The difference is that

Thomson’s condition is stated in terms of the welfare of the agents rather
than their allotments; however, given efficiency, these two conditions are
equivalent. The idea behind replacement monotonicity is that if we think
of individual i as walking away with a smaller part of the pie, then the
remaining pie has increased for the remaining agents, and so they should
all receive at least as large an allotment as they did before.

Ž .Thomson 1992 provides a characterization of the uniform rule using
one-sided replacement domination. Our characterization turns out to be

10 There are a number of conditions that are in the spirit of requiring that the allocations
or welfare of some group of agents move in the same direction in response to a change in
some characteristic of the economy which affects the availability of resources for that group

Ž . Ž .of agents. Examples of such conditions can be found in Kalai 1977 , Roemer 1986 ,
Ž . Ž . Ž .Sprumont 1992 , Thomson 1994a, 1994b , and Young 1987 , to mention a few. See

Ž .Thomson 1992 for more discussion.
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Ž .11different from Thomson’s Theorem 1 since he marries one-sided re-
placement-domination with envy-freeness, efficiency, and replication in-
variance. Envy-freeness implies a symmetric treatment of agents which
results in the uniform rule. Our deliberate move away from this type of
symmetry and our concentration on strategy-proofness results in a differ-

Ž .ent larger class of allotment rules.
There is some flavor of symmetry to the condition of replacement

monotonicity, in that it says agents should be affected in a similar direction
in response to a change in some agent’s preferences. However, this type of
symmetry is substantially different from the type of symmetry required by
equal treatment of equals, anonymity, or envy-freeness. In particular,
equal treatment, anonymity, and envy-free conditions can preclude an
equitable treatment in situations where there are existing differences in
agents, such as in age or ability. In the presence of such differences, equity

Žmay require an allotment which is to some degree asymmetric and which
.may involve envy . Such allotments are not precluded by replacement

monotonicity, since it only prescribes a symmetry in the directions that
agents’ allotments should move in in response to a common change, rather
than a symmetry in the relative sizes of agents’ allotments.

We now define the class of allotment rules which are strategy-proof,
efficient, and satisfy replacement monotonicity, which we call ‘‘sequential’’
allotment rules. Such rules follow a procedure that considers initial guar-
anteed levels for the agents and compares these to their ideal points.

ŽConsider the case where the sum of the ideal points is at least one the
.other case is analogous . In this case agents whose ideal points are less

than their initial guaranteed levels will receive those ideal points. This
frees up excess to be redistributed among the remaining agents. We can
think of this as an adjustment of the guaranteed levels. The levels are

Žadjusted to the ideal points of the first group of agents who wanted less
.than their respective guaranteed levels , and the remaining agents’ levels

are adjusted to incorporate the excess. This is done so that none of the
Žremaining agents’ levels decrease but it is possible that some increase

.while others stay constant . Thus, at each step the levels are ‘‘guaranteed’’
in that an agent will always receive at least that much from the procedure
Ž .and possibly more in future steps , unless they desire less in which case
they get exactly what they desire. This procedure is repeated as in each
step some of the agents whose levels were adjusted may have an ideal
point less than their new guaranteed level. This frees up new excess, etc.
The process ends when there are no agents whose ideal points are less
than their new guaranteed levels. The ending guaranteed levels form the

11 Ž .See also Thomson Theorem 1, 1994b for a characterization involving one-sided re-
source-monotonicity, envy-freeness, and efficiency.
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allotment. Strategy-proofness will impose some constraints on how this
adjustment procedure depends on the ideal points of the agents. For
instance, an agent whose new guaranteed level is less than his or her ideal
point should get the same new guaranteed level if he or she announced an
even higher ideal point. The formal description of this adjustment proce-
dure is now given.

L H n u H Ž .First, given q g A, q g A, and u g S , let q s q if Ý x* uk g N k
u L Ž . nG 1, and q s q if Ý x* u - 1. Consider a function g : A = S ªk g N k

A = Sn. The notation g t denotes g composed with itself t times, with
0Ž . Ž .g q, u s q, u .
The function g is a sequential adjustment function relative to q L g A

H Ž t . Ž t .and q g A if the following are true for any q , u such that q , u s
Ž ty1 . tŽ u . 12g q , u s g q , u for some t G 1:

t Ž . Ž Ž ..Ž ty1 Ž ..1. q s x* u if 1 y Ý x* u q y x* u F 0.i i jg N j i i

Ž t ty1.Ž Ž .. Ž Ž ..Ž ty12. q y q 1 y Ý x* u F 0 if 1 y Ý x* u q yi i jg N j jg N j i
Ž ..x* u ) 0.i

Ž . Ž . ty1 Ž . Ž .3. If x* ¨ G x* u ) q and Ý x* u G 1, or if x* ¨ Fi i i jg N j i
Ž . ty1 Ž . Ž ty1 . Ž ty1 .x* u - q and Ý x* u - 1, then g q , u s g q , u , ¨ .i i jg N j yi i

n Ž n . nŽ u .4. Consider ¨ and q such that q , u , ¨ s g q , u , ¨ . Let˜ ˜i yi i yi i
n nŽ u .q s g q , u . Then

Ž . Ž . Ž . n nif x* ¨ G x* u and Ý x* u G 1, then q G q for j / i.˜i i k g N k j j

Ž . Ž . Ž . n nif x* ¨ F x* u and Ý x* u - 1, then q F q for j / i.˜i i k g N k j j

Let us briefly paraphrase the above definition for the case where the
Ž Ž . .total of the ideal points is at least 1 Ý x* u G 1 . In the definition of g,j j

part 1 says that if at any stage some agents’ ideal points are not higher
then their guaranteed amounts, then their guaranteed levels adjust to be
their ideal points. Part 2 says that the guaranteed levels of the remaining

Ž .agents whose ideal points exceed their current guaranteed levels cannot
adjust downward. Part 3 states that if one changes the preferences of an
agent who desires more than their guaranteed level at some stage, so that
the agent still desires more than their guaranteed level at that stage, then
the adjustment is unaffected. Part 4 states that if an agent’s ideal point is
increased, then the remaining agents’ guaranteed levels cannot decrease.

A sequential allotment rule f is an allotment rule such that there exist
initial guaranteed q L and q H in A and g, a sequential adjustment

12 Note that a sequential adjustment function is defined over all possible guaranteed levels
and utility function profiles. Our requirements only apply to those combinations which can be
reached by some iteration applied to initial guaranteed levels and profiles of utility functions.
A sequential function could be arbitrary at points never reached and would still respect
strategy-proofness, etc.
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L H Ž .function relative to q and q , such that f u s q wherei i

g n q H , u if Ý x* u G 1Ž .Ž . ig N iq , u sŽ .i n L½ g q , u if Ý x* u - 1.Ž .Ž . ig N i

Note that a sequential adjustment function will adjust at most n times.13

Before stating our characterization theorem, we illustrate the definition
of a sequential allotment rule.

EXAMPLE 3. Seven children attend a party and share a cake. We will
Žsimply consider the case where the sum of their ideal shares exceeds 1. In

this example we actually have free disposal: the case where the ideal
14 .shares sum to less than 1 can be handled by a hungry parent.

Let us name the children Lisa, Emily, Andrea, Claudia, Pablo, Marc,
Žand Quim. Consider a situation where the children line up in the order

.Lisa, Emily, Andrea, Claudia, Pablo, Marc, Quim and then each takes
whatever amount of the remaining cake they please when they reach the

H Ž .front of the line. Here, we start with q s 1, 0, 0, 0, 0, 0, 0 . This follows
since Lisa, at the front of the line, can have as much cake as she wishes,
but nobody else is initially guaranteed anything. Next, Emily’s guarantee is
adjusted to be the amount of the cake left after Lisa has left so that

q1 s x* u , 1 y x* u , 0, 0, 0, 0, 0 .Ž . Ž .Ž .1 1

This continues in the obvious way so that

2q s x* u , min 1 y x* u , x* u ,Ž . Ž . Ž .Ž 1 1 2

max 1 y x* u y x* u , 0 , 0, 0, 0, 0 ,Ž . Ž . .1 2

and generally

min max 1 y Ý x* u , 0 , x* u if i F t , andŽ . Ž .t j- i j iq si ½ 0 otherwise.

EXAMPLE 4. Let us reconsider Example 3, assuming that the parents
take a less laissez faire attitude about the division of the cake. For

13 By parts 1 and 2 of the definition, an adjustment only takes place if some agents ideal
Ž Ž .points are less than their current guaranteed amounts in the case where Ý x* u G 1,ig N i

.and the opposite for the other case , and then those agents’ new guaranteed levels adjust to
their ideal points and stay there. Since there are only n agents, at most n adjustments take
place.

14 In situations with free disposal the allotment problem can generally be adapted by simply
giving agents their ideal points whenever they sum to no more than 1.
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simplicity let us consider a party with four children: Lisa, Emily, Marc, and
Quim. Emily and Quim are older than their respective siblings, Lisa and
Marc, and it is agreed that Emily and Quim be entitled to twice as large
shares of the cake. However, Lisa and Emily are guests, so it is also agreed
that they have first rights to any excess, should someone desire less than

Žtheir share. In the case of any further excess if at least one of the guests
.does not want all of the excess offered to them , it is to be split uniformly

among those not already full.
Given this description, and ordering the children Lisa, Emily, Marc,

H Ž .Quim, we have an initial guaranteed level of q s 1r6, 1r3, 1r6, 1r3 .
Let us consider any situation where Lisa wants less than her share

Ž Ž . .x* u - 1r6 , and the others want more than their respective shares1
Ž Ž . H . Ž 1 . Ž H .x* u ) q , i G 2 . In this case the adjustment is to q , u s g q , ui i

1 Ž Ž . Ž . . Ž .where q s x* u , 1r3 q 1r6 y x* u , 1r6, 1r3 . Now if x* u G1 1 2
Ž . Ž t 11r3 q 1r6 y x* u , then this is the final allotment so q s q for all1

. 2 Ž Ž . Ž . Žt ) 1 . Otherwise, we move to q s x* u , x* u , 1r6 q 1r2 y1 2
Ž . Ž .. Ž Ž . Ž .. .x* u y x* u r2, 1r3 q 1r2 y x* u y x* u r2 . If both Marc and1 2 1 2

Quim desire as much as their q2 allotments, then this is the final allot-
ment. If one wants less, then the other receives the undesired portion of

Žthe other’s allotment. We know that at most one will want less since we
.started with the assumption that the total of the ideal points is at least 1 .

Ž . Ž Ž . Ž .. 3For instance, if x* u - 1r3 q 1r2 y x* u y x* u r2, then q s4 1 2
Ž Ž . Ž . Ž . Ž . Ž . Ž ..x* u , x* u , 1 y x* u y x* u y x* u , x* u .1 2 1 2 4 4

Ž Ž .Next, consider a situation where Quim wants less than his share x* u4
. Ž Ž .- 1r3 , and the others want more than their respective shares x* u )i

H . Ž 1 . Ž H .q , i F 3 . In this case the adjustment is to q , u s g q , u wherei
1 Ž Ž Ž .. Ž Ž .. Ž ..q s 1r6 q 1r3 y x* u r2, 1r3 q 1r3 y x* u r2, 1r6, x* u .4 4 4

Now if Emily and Lisa want at least as much as they are allotted here, then
Ž t 1 .this is the final allotment so q s q for all t ) 1 . If both want less, then

2 Ž Ž . Ž . Ž . Ž .the final allotment would be q s x* u , x* u , 1 y x* u y x* u y1 2 1 2
Ž . Ž .. Ž . Žx* u , x* u . If just one wants less, say x* u - 1r3 q 1r3 y4 4 2
Ž ..x* u r2 then this excess is divided in two and added to the guaranteed4

15 2 Ž Ž .allotments of Lisa and Marc, so we move to q s 7r12 y 3 x* u r4 y4
Ž . Ž . Ž . Ž . Ž ..x* u r2, x* u , 5r12 y x* u r4 y x* u r2, x* u . If either Lisa or2 2 4 2 4

Marc wants less than this amount, then they receive their ideal and the
excess is given to the other. Otherwise, this is the final allotment.

There are many other cases that could arise, which we will not go
through, but which follow similar progressions.

15 Once the guests have gotten a first excess allocation, then all of those who are still
hungry are treated equally if there is any excess at this stage. Note that the rule would still be
strategy-proof if instead of treating all equally, one ‘‘favored’’ Marc at this stage, and then
went back to favoring Lisa, etc.
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THEOREM. An allotment rule is strategy-proof and efficient and satisfies
replacement monotonicity if and only if it is a sequential allotment rule.

Remark. The theorem can be strengthened by replacing efficiency with
the requirement that f map onto the set of possible allotments.16

Remark. The sequential allotment rules depend only on the ideal
points of the agents, and not on further information concerning prefer-
ences.17 With this in mind, it is easy to see that any sequential allotment

Ž .rule is fully implemented in dominant strategies by the direct mechanism
which asks for reports of ideal points.18

Remark. The sequential allotment rules are coalitionally strategy-proof.
That is, there is no group of agents who could all benefit by coordinating a
misrepresentation of their preferences.19

In the Introduction we mentioned rules where agents have initial claims
or entitlements. The following corollary characterizes this subclass of
sequential allotment rules.

16 We can see that if an allotment rule is strategy-proof, satisfies replacement monotonic-
ity, and maps onto A, then it is efficient. Suppose that f is not efficient. Then there exists

n Ž . Ž .some u g S and partition of the agents into I , I , I such that f u s x* u for all i g I ,1 2 3 i i 1
Ž . Ž . Ž . Ž .f u - x* u for all i g I , f u ) x* u for all i g I , and I and I are nonempty. Findi i 2 i i 3 2 3

Ž . Ž . Ž . Ž .a g A such that f u s a s x* u for all i g I , f u - a - x* u for all i g I , andi i i 1 i i i 2
Ž . Ž . N Ž .f u ) a ) x* u for all i g I . Choose ¨ g S such that x* ¨ s a for all i. If we changei i i 3 i i

agents’ utility functions one at a time from u to ¨ , it follows from strategy-proofness andi i
Ž . Ž .replacement monotonicity that f u s f ¨ . However, since f is onto A, there exists some û

Ž . Ž . Ž .such that f u s a. By the same argument f ¨ s f u , which leads to a contradiction. Henceˆ ˆ
our supposition was wrong.

17 In other words, sequential allotment rules are ‘‘tops only,’’ a consequence of strategy-
proofness, efficiency, and the nonbossiness implied by replacement monotonicity. By strategy-
proofness and efficiency, an individual cannot affect their own allotment by changing to a new

Žw Ž . Ž .x Ž .preference with the same ideal point. By nonbossiness f u s f u , ¨ « f u si i y i i
Ž ..f u , ¨ none of the allotments are affected.yi i

18 This equivalence to full implementation in dominant strategies is not true more gener-
Ž .ally of strategy-proof social choice functions. This is discussed in Dasgupta et al. 1979 and

Ž .Jackson 1992 .
19 This can be seen using the strategy proofness, efficiency, nonbossiness, and tops-only

Ž .properties. For instance, consider the case where Ý x* u ) 1. By efficiency, any coalition Ci i
Ž . Ž .that could improve for all of its members must have f u - x* u for j g C. Consider aj j

change from u to ¨ , changing one member of the coalition’s utility at a time. Let k be theC C
first member whose new announcement changes the allocation. By strategy-proofness and

Ž . Ž .nonbossiness, it must be that x* ¨ - f u . If under u , ¨ the sum of the ideals is still atk k yC C
Ž Ž . Ž ..least one, then by efficiency k will end up worse off f u , ¨ F x* ¨ . If under u , ¨yC C k yC C

the sum of the ideals is less than one, by efficiency yC will get more than their ideal points,
leaving a smaller total pie for C so someone is worse off.
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COROLLARY. An allotment rule is strategy-proof and efficient, satisfies
replacement monotonicity, and is indï idually rational20 with respect to an
allotment e if and only if it is a sequential allotment rule such that q H s q L s e.

Remark. Note that the above characterization does not place restric-
tions on the evolution of guaranteed levels after the first stage of the

Žsequential allotment beyond those restrictions imposed in the definition
.of sequential allotment rule . For instance, if ideal points sum to more

than 1 and some agent’s ideal point is less than his or her entitlement e ,i
Ž .then this frees up excess so that some other agent s may get more than

their entitlement. Individual rationality does not have implications for how
this excess be allotted. It could be done in any number of ways consistent
with a sequential allotment rule. For instance, it could be done according
to a queue, according to some further entitlements, or even uniformly. A

Ž .recent paper by Klaus et al. 1995 characterizes this last set of rules,
where rationing away from these entitlements is done according to the
uniform rule. This rule, which they call the uniform reallocation rule, is
the only one to satisfy strategy-proofness, efficiency, and a property of
equal treatment.21

Proof of the Theorem. We begin by showing that any allotment rule
which is strategy-proof and efficient, and which satisfies replacement
monotonicity, is a sequential allotment rule. Then we show the converse.

Consider f , which is strategy-proof, efficient, and replacement mono-
tonic. We will construct an associated sequential adjustment function as

Ž . Ž .follows. Let u and u be such that x* u s 1 and x* u s 0 for each1 i
H LŽ . Ž . Ž .i g N. Let q s f u and q s f u . Define g as follows: Given q, u leti i i i

Ž . Ž . Ž .q, u s g q, u be such that q s f w whereˆ î i

¡u if 1 y Ý x* u q y x* u F 0Ž . Ž .Ž .Ž .i jg N j i i~w s u if x* u ) q and Ý x* u G 1, andŽ . Ž .i i i i ig N i¢u if x* u - q and Ý x* u - 1.Ž . Ž .i i i ig N i

Ž . nŽ u . u HWe show that f u s q where q s g q , u and q s q ifi i i
Ž . u L Ž .Ý x* u G 1, and q s q if Ý x* u - 1. Then we show thatig N i ig N i

conditions 1 through 4 in the definition of sequential adjustment function
are satisfied with respect to the above defined adjustment function.

20 Ž Ž ..u f u G e for each u and i.i i i
21 Their setting is slightly different from ours in that the consumption set for each agent is

unbounded. They use such a specification to allow for a translation invariance condition
which is part of their equal treatment condition. Of course, our approaches are complemen-
tary in that they characterize different classes of rules.
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Ž .Let us assume that u is such that Ý x* u G 1. The proof for theig N i
Ž .case where Ý x* u - 1 is analogous. The following two facts will beig N i

useful in the proof.
By efficiency

f u F x* u . 1Ž . Ž . Ž .i i

N Ž . Ž .By strategy proofness, for every u g S : f u F f u , u , and byj j yj j
Ž . Ž .replacement monotonicity it follows that for every i / j: f u G f u , u .i i yj j

j jChanging u to u , one agent at a time, it follows that for any C ; N and
any i g C:

f u G f u , u . 2Ž . Ž .Ž .i i yC C

Ž . nŽ u . Ž t .Now, let us show that f u s q where q s g q , u . Let q , u si i
tŽ H . t 22g q , u and let w be such that:

u if x* u F qty1 , andŽ .i i itw si ty1½ u , if x* u ) q .Ž .i i i

Ž . t Ž t.We proceed by induction on t, showing that f u s q s f w for all ii i i
Ž . ty1 Ž . ty1such that x* u F q , and for all i g N if x* u G q for all i.i i i i

We begin with t s 1.

Ž . H H Ž . Ž 1.Case A. x* u G q for all i. We show that q s f u s f wi i i i i
1 HŽ . Ž . Ž .s q for each i. By strategy-proofness at u, q s f u G f u , u fori i i i yi i

H Ž .each i g N. By strategy-proofness at u , u , it follows that q s f u syi i i i
HŽ . Ž . Ž . Ž .f u , u . By 2 , f u G f u , u s q for each i g N. Thus, sincei yi i i i yi i i

H Ž . H ŽÝq s 1, it follows that f u s q . By replacement monotonicity imply-i i i
. Ž . Ž 1.ing nonbossiness , we also have that f u s f w .i i

Ž . HCase B. x* u - q for some i. We want to establish that for such ani i
1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .i f u s f w . By 1 , x* u G f u . By 2 , f u G f u , u . By strat-i i i i i i yi i

H HŽ . Ž .egy-proofness and the fact that q s f u , it follows that q G f u , u .i i i i yi i
Ž . Ž .By the continuity of f u , u in u see Sprumont 1991, Lemma 1 andi yi i i

Ž . Ž . Ž .strategy-proofness, it follows that f u , u G x* u . Thus, x* u Gi yi i i i
Ž . Ž . Ž . Ž . Ž . Ž .f u G f u , u G x* u , so that f u s x* u . Since f u , u si i yi i i i i i yi i
Ž . Ž .x* u s f u , for any such i, it follows from replacement monotonicityi i

Ž . Ž .and strategy-proofness considering each such i in sequence that f u si
Ž 1.f w .i

Ž .We now proceed by induction on t. Suppose that for all t - T f u si
t Ž t. Ž . ty1 Ž .q s f w for all i such that x* u F q , and for all i g N if x* u Gi i i i

q ty1 for all i. We must show that the same is true for t s T.

22 Ž . Ž . tThis definition is assuming that Ý x* u G 1. If Ý x* u - 1, then set w s uig N i ig N i i i
Ž . ty1 t Ž . ty1if x* u G q , and w s u if x* u - q .i i i i i i
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T Ž . Ty1 Ty1 Ty1Case A . x* u G q for all i. By strategy-proofness at w , qi i i
Ž Ty1. Ž Ty1 .s f w G f w , u for each i g N. By strategy-proofness ati i yi i

Ty1 Ty1 Ž Ty1. Ž Ty1 . Ž . Ž .w , u , it follows that q s f w s f w , u . By 2 , f u Gyi i i i i yi i i
Ž ty1 . ty1 ty1 Ž .f w , u s q for each i. Thus, since Ý q s 1 s Ý f u , it fol-i yi i i i i i i

Ž . ty1 Žlows that f u s q for each i. By replacement monotonicity implyingi i
. Ž . Ž t.nonbossiness , we also have that f u s f w .i i

T Ž . Ty1 Ž .Case B . x* u - q for some i. Consider such an i. By 1 ,i i
Ž . Ž . Ž . Ž . Ž .x* u G f u , and by 2 , f u G f u , u . By strategy-proofness and thei i i i yi i

Ty1 Ž Ty1. T Ž Ty1 .fact that q s f w , it follows that q G f w , u . By the continu-i i i i yi i
Ž .ity of f in u see Sprumont 1991, Lemma 1 and strategy-proofness, iti i

Ž Ty1 . Ž . Ž . Ž .follows that f w , u G x* u . Thus, we have shown that x* u G f ui yi i i i i
Ž Ty1 . Ž . Ž . Ž . Ž Ty1 .G f w , u G x* u , so that f u s x* u . Finally, since f w , ui yi i i i i i yi i
Ž . Ž .s x* u s f u for any such i, it follows from replacement monotonicityi i

Ž . Ž T .and strategy-proofness that f u s f w .i i

We have shown that f is represented by the above defined adjustment
function. It remains to be checked that conditions 1 through 4 in the
definition of sequential adjustment function are satisfied.

Ž . Ž ty1.To see condition 1, we need to show that if x* u F f w theni i
Ž . Ž t.x* u s f w . This is shown in both cases of our inductive proof, above.i i

Condition 2, then, follows from replacement monotonicity applied to our
inductive proof above. Condition 3 follows from our definition of g and
the fact that in this case w t is the same for both u and ¨ . Condition 4i i i
follows from replacement monotonicity.

Now let us establish the converse. Let f be a sequential allotment rule.
We need to show that f is strategy-proof, efficient, and satisfies replace-
ment monotonicity.

Claim. f is efficient.

Ž .Proof. Consider u such that Ý x* u G 1. The case whereig N i
Ž . Ž . Ž .Ý x* u - 1 is analogous. We must show that f u F x* u for eachig N i i j

Ž . Ž . Ži. Consider i such that f u / x* u . It follows from 1 in the definition ofi i
. t Ž . Žsequential adjustment rule that q - x* u for all t - n. Then by 2 ini i

. Ž . nthe definition of sequential adjustment rule it follows that f u s q -i i
Ž .x* u . Bi

Claim. f is strategy-proof.

Ž . ŽProof. Consider u such that Ý x* u G 1. Again, the case whereig N i
Ž . . Ž . Ž .Ý x* u - 1 is analogous. If f u s x* u , then there can be noig N i i i

Ž . Ž .improving deviation. So consider the case where f u / x* u . By effi-i i
Ž . Ž . n Ž . Žciency above , f u s q - x* u . By 1 and 2 in the definition ofi i i

. ty1 t Ž .sequential adjustment rule it follows that q F q - x* u for eachi i i
Ž .1 F t F n. Then by 3 in the definition of sequential adjustment rule , in
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order to effect any change in f via ¨ at u it would have to be thati
Ž . t Ž . tq1 nx* ¨ F q for some 1 F t - n. But then by 1, f u , ¨ s q F q si i i yi i i i
Ž . Ž Ž .. Ž Ž ..f u . Thus, u f u , ¨ F u f u . Bi i i yi i i i

Claim. f is replacement monotonic.

Proof. Consider u, i, and ¨ as in the definition of replacement mono-i
Ž . Ž .tonicity. From strategy-proofness above it follows that to have f u Fi

Ž . Ž .f u , ¨ as in the definition of replacement monotonic it must be thati yi i
Ž . Ž . Ž . Ž . Ž . Ž .x* ¨ G x* u . Thus, Ý x* u F x* ¨ q Ý x* u . If Ý x* ui i jg N j i j/ i j jg N j

Ž . Ž .F 1 F x* ¨ q Ý x* u , then replacement monotonicity follows fromi j/ i j
Ž . Ž .efficiency above . So consider 1 F Ý x* u . Then replacement mono-jg N j

Ž .tonicity follows from 4 in the definition of sequential adjustment rule .
Ž . Ž .The same is true for the case where x* ¨ q Ý x* u F 1. Bi j/ i j

REFERENCES

Ž .Aumann, R., and Maschler, M. 1985 . ‘‘Games Theoretic Analysis of a Bankruptcy Problem
from the Talmud,’’ J. Econ. Theory 36, 195]212.

Ž .Barbera, S., and Jackson, M. 1994 . ‘‘A Characterization of Strategy-Proof Social Choice`
Functions for Economies with Pure Public Goods,’’ Social Choice and Welfare 11, 241]252.

Ž .Barbera, S. and Jackson, M. 1995 . ‘‘Strategy-Proof Exchange,’’ Econometrica 63, 51]88.`
Ž .Benassy, J.-P. 1982 . The Economics of Market Disequilibrium. New York: Academic Press.

Ž .Ching, S. 1992 . ‘‘A Simple Characterization of the Uniform Rule,’’ Econ. Lett. 40, 57]60.
Ž .Ching, S. 1994 . ‘‘An Alternative Characterization of the Uniform Rule,’’ Social Choice and

Welfare 11, 131]136.
Ž .Dasgupta, P., Hammond, P., and Maskin, E. 1979 . ‘‘The Implementation of Social Choice

Rules: some General Results on Incentive Compatibility,’’ Re¨ . Econ. Stud. 46, 185]216.
Ž .Gibbard, A. 1973 . ‘‘Manipulation of Voting Schemes: A General Result,’’ Econometrica 41,

587]601.
Ž .Jackson, M. 1992 . ‘‘Implementation in Undominated Strategies: A Look at Bounded

Mechanisms,’’ Re¨ . Econ. Stud. 59, 757]775.
Ž .Kalai, E. 1977 . ‘‘Proportional Solutions to Bargaining Situations: Interpersonal Compar-

isons of Utility,’’ Econometrica 45, 1623]1630.
Ž .Klaus, B., Peters, H., and Storcken, T. 1995 . ‘‘Strategy-Proof Division with Single-Peaked

Preferences and Initial Endowments,’’ mimeo. Department of Quantitative Economics,
University of Maastricht.

Ž .Moulin, H. 1980 . ‘‘On Strategy-Proofness and Single-Peakedness,’’ Public Choice 35,
437]455.

Ž .Moulin, H. 1985a . ‘‘Egalitarianism and Utilitarianism in Quasi-Linear Bargaining,’’ Econo-
metrica 53, 49]67.

Ž .Moulin, H. 1985b . ‘‘The Separability Axiom and Equal Sharing Methods,’’ J. Econ. Theory
36, 120]148.

Ž .Moulin, H. 1987 . ‘‘Equal or Proportional Division of a Surplus, and other Methods,’’ Int. J.
Game Theory 16, 161]186.



STRATEGY-PROOF ALLOTMENT RULES 21

Ž .Moulin, H., and Thomson, W. 1995 . ‘‘Axiomatic Analysis of Resource Allocation,’’ Working
Paper 400, Rochester Center for Economic Research.

Ž .Roemer, J. 1986 . ‘‘Equality of Resources Implies Equality of Welfare,’’ Quart. J. Econ. 101,
751]784.

Ž .Satterthwaite, M. 1975 . ‘‘Strategy-Proofness and Arrow’s Conditions: Existence and Corre-
spondence Theorems for Voting Procedures and Social Welfare Theorems,’’ J. Econ.
Theory 10, 187]217.

Ž .Satterthwaite, M., and Sonnenschein, H. 1981 . ‘‘Strategy-Proof Allocation Mechanisms at
Differentiable Points,’’ Re¨ . Econ. Stud. 48, 587]597.

Ž .Sonmez, T. 1994 . ‘‘Consistency, Monotonicity, and the Uniform Rule,’’ Econ. Lett. 46,¨
229]235.

Ž .Sprumont, Y. 1991 . ‘‘The Division Problem with Single Peaked Preferences: A Characteri-
zation of the Uniform Allocation Rules,’’ Econometrica 59, 509]519.

Ž .Sprumont, Y. 1992 . ‘‘Axiomatizing Ordinal Welfare Egalitarianism when Preferences Vary,’’
J. Econ. Theory, forthcoming.

Ž .Thomson, W. 1992 . ‘‘The Replacement Principle in Economies with Single-Peaked Prefer-
ences,’’ J. Econ. Theory, forthcoming.

Ž .Thomson, W. 1994a . ‘‘Consistent Solutions to the Problem of Fair Division when Prefer-
ences are Single-Peaked,’’ J. Econ. Theory 63, 219]245.

Ž .Thomson, W. 1994b . ‘‘Resource Monotonic Solutions to the Problem of Fair Division when
Preferences are Single-Peaked,’’ Social Choice and Welfare 63, 205]224.

Ž .Thomson, W. 1995 . ‘‘Population Monotonic Solutions to the Problem of Fair Division when
Preferences are Single-Peaked,’’ Econ. Theory 5, 229]246.

Ž .Young, P. 1987 . ‘‘On Dividing an Amount According to Individual Claims or Liabilities,’’
Math. Oper. Res. 12, 398]414.


