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1 Introduction

The purpose of this paper is to give, for each substitutable preference pro�le of the many-

to-one matching model, a systematic procedure to distinguish between those orderings (on

pairs of subsets of workers in the preferences of �rms) that are irrelevant for the set of

stable matchings from those that, if inverted, the set of stable matchings changes.

The many-to-one matching model consists of two disjoint sets: the set of institutions

(like �rms, colleges, schools, and hospitals) and the set of individuals (workers, students,

children, and medical interns). The assignment problem consists of matching each �rm to

a subset of workers and each worker to at most one �rm in such a way that if a worker is

matched to a �rm, this �rm is matched to a subset of workers that contains this worker

(workers as well as �rms may remain unmatched). The assignment problem is not trivial

because agents have preference relations on potential mates. Each worker has a strict

preference relation on the set of �rms plus the prospect of remaining unmatched, and each

�rm has a strict preference relation on the family of subsets of workers (which includes

the empty set, interpreted as being unmatched). A preference pro�le is a list of preference

relations, one for each agent.

Stability has consistently been used as the solution concept for matching markets. In

particular, many entry-level professional labor markets use a centralized stable mechanism

which collects agents�preference relations and proposes a stable matching. The National

Resident Matching Program, that matches each year around 20,000 hospital positions and

medical students for internship in the USA and Canada, is a well-known example of a

centralized stable mechanism.1 In many countries students are matched to positions in col-

leges or schools through centralized mechanisms as well.2 But also civil servants, sportsmen,

researchers, and many others are often matched using centralized mechanisms.3

To be stable, a matching has to be individually rational: agents have to be assigned

1See Roth (1984a), Roth and Peranson (1999), and Roth (2002) for a description and analysis of this

market.
2See, for instance, Abdulkadiro¼glu and Sönmez (2003), Abdulkadiro¼glu, Pathak, and Roth (2005), Ab-

dulkadiro¼glu, Pathak, Roth, and Sönmez (2005 and 2006).
3See Roth and Xing (1994) for a discussion of many centralized matching markets. Romero-Medina and

Triossi (2005) perform a strategic analysis of a matching market in Spain in which young researchers are

matched to research institutions by means of a partially centralized mechanism.
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to acceptable partners; otherwise, if matching is voluntary, the match will not last. In

addition, to be stable, a matching has to be pairwise stable: there should not exist any pair

formed by a �rm and a worker that are not matched to each other, such that the worker

would prefer the �rm to the current match and the �rm would like to add the worker to

the set of workers that it is matched to (perhaps after �ring some of these workers).

In the marriage model and the college admissions problem the set of stable matchings

is always non-empty.4 However, for some preference pro�les of the general many-to-one

matching model the set of stable matchings is empty. All these preference pro�les share the

feature that some �rm considers some workers as complements. Kelso and Crawford (1982)

de�ned the notion of substitutability as the absence of complementarities. Substitutability

says that the desirability of a worker in a particular set does not come from the presence of

another worker in that set; i.e., the �rm still wants to hire the worker even when the other

worker is not available anymore. If the preference pro�le is substitutable (i.e., each �rm

has a substitutable preference relation) the set of stable matchings is non-empty. Hence,

we will assume that preference pro�les are substitutable.

The aim of this paper is to understand when the set of stable matchings changes in

response to changes in the preference relations of �rms. Take a preference pro�le and a �rm.

Consider two subsets of workers S and S 0 and assume that the �rm prefers S to S 0. Replace

in the preference pro�le the preference relation of the �rm with a new preference relation

in which the �rm prefers S 0 to S and all other orderings remain the same. Depending on

the preference pro�le and the two subsets S and S 0 the set of stable matchings may either

change or remain the same. We will give a procedure to identify those orderings between

pairs of subsets of workers that, if inverted, the set of stable matchings remains the same for

all possible preference relations of the other agents; i.e., orderings between pairs of subsets

of workers that from the point of view of stability are irrelevant. Hence, centralized stable

mechanisms do not need to use as input this irrelevant information. Speci�cally, given the

substitutable preference relation Pf of �rm f on all subsets of workers, de�ne a partial

order �Pf as follows:5 given two subsets of workers S and S 0, we declare that S is preferred
4These two models were introduced and studied in Gale and Shapley�s (1962) seminal paper. The

marriage model is the one-to-one matching model and the college admissions problem is the many-to-one

matching model with quotas and responsive preferences (a meaningful subclass of substitutable preferences).
5A (strict) preference relation of a �rm is a complete, transitive, and antire�exive binary relation on
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(according to the partial order �Pf ) to S 0 if and only if S is the best subset (according to
Pf) among all subsets of S [ S 0; otherwise, they are not ordered by �Pf . It turns out that
this partial order is a semilattice on a subfamily of subsets of workers.6 We refer to it as the

semilattice of the choice of the union. We will prove that it is individually rational, ordered,

and closed. A semilattice is individually rational if the partially ordered family of subsets

of workers is composed of those sets that are preferred to their subsets. A semilattice is

ordered if for all subsets S and S 0 in the partially ordered family of subsets of workers, the

least upper bound (according to �Pf ) of S and S 0 coincides with the least upper bound
(according to �Pf ) of all subsets of S [ S 0, and in addition, this set is contained in S [ S 0.
A semilattice is closed if all subsets of each set in the family are themselves elements

of the family. Now, suppose we start with an individually rational, ordered, and closed

semilattice and we (strongly) extend it to a preference relation by maintaining all orderings

of the partial order and declaring a particular order on all unordered pairs. Observe that

in general there will be many di¤erent strong extensions of a semilattice. However, all

strong extensions will be substitutable. Yet, for each strong extension we can obtain its

corresponding semilattice of the choice of the union. Then, it turns out that all these

semilattices are the same and coincide with the original one from which we obtained the

strong extensions.

All these properties are relevant because they will be useful to prove that we can partition

the set of substitutable preference pro�les by grouping together in equivalence classes all

pro�les including, for each �rm, preference relations that are strong extensions of the same

semilattice. Note that, given a preference relation Pw of worker w, we could similarly

construct the partial order �Pw on the set of acceptable �rms. However, this partial order
�Pw is trivially a semilattice on the set of acceptable �rms because it coincides with the
initial complete preference relation Pw (on the set of acceptable �rms) since the choice of the

union of two di¤erent �rms is always equal to the best of the two �rms. Thus, from the point

of view of the workers�preference relations all orderings (between pairs of acceptable �rms)

the family of all subsets of workers. A partial order of a �rm is a re�exive, transitive, and antisymmetric

binary relation on a family of subsets of workers. Observe that, in general, a partial order is not complete;

i.e., some pair of subsets of workers may not be comparable.
6A semilattice is a partially ordered set with the property that the least upper bound of any pair of

elements in the set exists.
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are relevant for the set of stable matchings. This is the reason why preference relations of

workers will remain �xed while identifying equivalence classes of preferences of �rms. In

particular, Theorem 1 says that the set of stable matchings is invariant across substitutable

preference pro�les that belong to the same equivalence class. Hence, from the point of view

of stability information contained in the complete preference relations of �rms is irrelevant

since only those orderings kept by the pro�le of semilattices of the choice of the union

matter. Thus, centralized stable mechanisms could disregard this irrelevant information.

The paper is organized as follows. In Section 2 we present the preliminary notation and

de�nitions. In Section 3 we describe our results by means of an example, de�ne the notion

of a semilattice, and state its main properties. In Section 4 we de�ne the notion of a strong

extension of a semilattice and present some preliminary results. In Section 5 we state and

prove the main result of the paper: Theorem 1, an invariance result, under substitutable

preference pro�les, for the set of stable matchings. Finally, in Section 6 we conclude with

a general description of the procedure that partitions the set of substitutable preference

pro�les.

2 Preliminaries

2.1 Agents, Preference Relations, and Matchings

There are two disjoint sets of agents, a set of n �rms F = ff1; :::; fng and a set of m
workers W = fw1; :::; wmg. Generic elements of both sets are denoted, respectively, by f
and by w. A generic agent will be denoted by v 2 V � F [W . Firms will hire sets of
workers (possibly empty) and workers will work for at most one �rm. Thus, each worker

w 2 W has a strict, transitive, and complete preference relation Pw over F [ f;g, and
each �rm f 2 F has a strict, transitive, and complete preference relation Pf over 2W .

Preference pro�les are (n+m)-tuples of preference relations and they are represented by

P = (Pf1 ; :::; Pfn ;Pw1 ; :::; Pwm). Given a preference pro�le P and f�s preference relation

P 0f , we will denote by (P
0
f ; P�f ) the original preference pro�le P after replacing Pf by P

0
f .

Given a preference relation of a �rm Pf , the subsets of workers preferred to the empty set

by f are called acceptable. Similarly, given a preference relation of a worker Pw, the �rms

preferred by w to the empty set are called acceptable. By convention, we declare the empty
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set as being acceptable for all agents.

A market is a triple (F;W; P ). The assignment problem consists of matching workers

with �rms, keeping the bilateral nature of their relationship and allowing for the possibility

that both �rms and workers may remain unmatched. Formally,

De�nition 1 A matching � is a mapping from the set F [W into the set of all subsets

of F [W such that for all w 2 W and all f 2 F :

1. Either j� (w)j = 1 and � (w) \ F 6= ; or else � (w) = ;:

2. � (f) 2 2W .

3. � (w) = ffg if and only if w 2 � (f) :7

LetM be the set of matchings. We say that agent v 2 F [W is unmatched at matching

� if � (v) = ;. Otherwise, v is matched at �. Given a matching � and a subset of agents
C � V , de�ne �(C) = fv 2 V j �(v) \ C 6= ;g:
Let Pf be a preference relation of �rm f . Given a set of workers S � W , let Ch (S; Pf )

denote �rm f�s most-preferred subset of S according to its preference relation Pf . Generi-

cally we refer to this set as the choice set.

2.2 Stability and Substitutable Preferences

Let (F;W; P ) be a market. A matching � is blocked by worker w if ;Pw� (w). A matching �
is blocked by �rm f if � (f) 6= Ch (� (f) ; Pf ). A matching is individually rational if it is not
blocked by any individual agent. We will denote the set of individually rational matchings

by IR(P ). A �rm-worker pair (f; w) is a pairwise block of matching � if w =2 � (f),

fPw� (w), and w 2 Ch (� (f) [ fwg ; Pf ).

De�nition 2 A matching � is stable if it is not blocked by any individual agent nor any

�rm-worker pair.

Given a preference pro�le P , we denote the set of stable matchings by S (P ). There are

preference pro�les with the property that the set of stable matchings is empty. Following

the literature we will assume that �rms have substitutable preference relations.

7With a slight abuse of notation, we often use �(w) as an element of F , and write �(w) = f instead of

�(w) = ffg:
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De�nition 3 A �rm f�s preference relation Pf satis�es substitutability if for any set S

containing workers w and w0 (w 6= w0), if w 2 Ch (S; Pf ) then w 2 Ch (Sn fw0g ; Pf ).

A preference pro�le P is substitutable if for each �rm f , the preference relation Pf
satis�es substitutability. For any substitutable preference pro�le P , S (P ) 6= ; and, for all
� 2 S (P ), �FRf�Rf�W for all f 2 F and �WRw�Rw�F for all w 2 W .8

The deferred-acceptance algorithm de�ned by Gale and Shapley (1962) produces, for

each substitutable preference pro�le P , either �F or �W depending on the side of the

market that makes the o¤ers. At any step of the algorithm in which �rms make o¤ers,

each �rm f proposes to the choice set of the set of workers that have not already rejected

f during previous steps, while a worker w accepts the most-preferred �rm among the set

of current o¤ers plus the �rm provisionally matched to w in the previous step (if any).

The algorithm stops at the step when either all o¤ers are accepted or �rms have no more

acceptable subsets of workers to whom they want to make an o¤er; the provisional matching

becomes then de�nite and is the stable matching �F . Similarly, if workers make o¤ers, the

outcome of the algorithm is the stable matching �W .

3 Invariance of the Set of Stable Matchings and Semi-

lattices

3.1 An Example

Our goal is to identify conditions on substitutable preference pro�les under which the set

of stable matchings is invariant. Speci�cally, we aim to give a simple procedure to partition

the set of substitutable preference pro�les into equivalence classes with the property that

all pro�les in the same class have the same set of stable matchings. Before proceeding, we

present an example that illustrates the main ideas of this procedure.

8See Kelso and Crawford (1982) and Roth (1984b). The matchings �F and �W are called, respectively,

the �rms-optimal stable matching and the workers-optimal stable matching. We are following the convention

of extending preferences from the original sets (2W and F [f;g) to the set of matchings. However, we now
have to consider weak preference relations since matchings � and �0 may associate to an agent the same

partner. This weak preference relation of agent v is denoted by Rv.
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Example 1 Let F = ff1; f2g be the set of �rms and W = fw1; w2; w3g be the set of
workers. Consider the substitutable preference pro�le P = (Pf1 ; Pf2 ;Pw1 ; Pw2 ; Pw3),

Pf1 Pf2 Pw1 Pw2 Pw3

fw3g fw1; w2g f1 f1 f2

fw1; w2g fw1; w3g f2 f2 f1

fw1g fw2; w3g ; ; ;
fw2g fw3g
; fw1g

fw2g
;;

where we only list acceptable partners in decreasing order (all missing subsets of workers

in the corresponding preference relations of �rms are not acceptable and, by individual

rationality of stable matchings, their relative orderings are irrelevant from the point of

view of stability). It is easy to check that S(P ) = f�1; �2g, where �1(f1) = fw1; w2g,
�1(f2) = fw3g, �2(f1) = fw3g, and �2(f2) = fw1; w2g: Consider now the two pro�les P 0

and P 00 in which only f2�s preference relation Pf2 has changed to P
0
f2
and to P 00f2, respectively;

that is, P 0 = (P 0f2 ; P�f2) and P
00 = (P 00f2 ; P�f2), where

P 0f2 P 00f2

fw1; w2g fw1; w3g
fw2; w3g fw1; w2g
fw1; w3g fw2; w3g
fw3g fw3g
fw1g fw1g
fw2g fw2g
; ;:

Note that Pf2 and P
0
f2
di¤er only on the ordering of the sets fw1; w3g and fw2; w3g while

Pf2 and P
00
f2
di¤er only on the ordering of the sets fw1; w2g and fw1; w3g. However, the

replacement of Pf2 by P
0
f2
does not produce any e¤ect on the set of stable matchings since

S(P 0) = S(P ) = f�1; �2g; while the replacement of Pf2 by P 00f2 changes the set of stable
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matchings since S(P 00) = f�1g (observe that �2 =2 S(P 00) because (f2; w3) is a pairwise block
of �2).

We will have to di¤erentiate between irrelevant versus relevant orderings (i.e., compar-

isons between two sets of workers) in Pf . The ordering SPfS 0 is irrelevant for stability if for

each P 0f that agrees with Pf except on the ordering of S and S
0, S(P 0f ; P�f ) = S(Pf ; P�f )

for all P�f ; otherwise, the ordering SPfS 0 is relevant for stability. For this purpose, we will

have to consider a partial order �Pf , which will leave as unordered those pairs that are irrel-
evantly ordered by Pf ; keeping all relevant orderings in Pf .9 Second, to understand which

orderings are irrelevant and which ones are relevant we will have to look at very special

properties of the partial order �Pf . For instance, we associate with the preference relation
Pf2 a partial order �Pf2 on the subfamily of subsets APf2 = fS 2 2W j S = Ch(S; Pf2)g
(i.e., APf2 = 2

Wnfw1; w2; w3g) as follows:10 for all S; S 0 2 APf2 ,

S �Pf2 S
0 if and only if S = Ch(S [ S 0; Pf2):

Observe that APf2 = AP 0f2
and for all S; S 0 2 APf2 , S �Pf2 S

0 if and only if S �P 0f2 S
0;

namely, �Pf2=�P 0f2 ; because

9Alkan (2001) also considers partial orders instead of complete preference relations to study the lattice

structure of the set of stable matchings of a many-to-one matching model.
10Blair (1988) uses a similar construction to establish the lattice structure of the set of stable matchings

in the many-to-many model introduced and studied by Roth (1984b and 1985). Fleiner (2003) uses a

partial order to study the set of stable matchings as �xed points. Echenique and Oviedo (2006) also uses

this partial order to identify a condition (strong substitutability) on preference relations that guarantee the

non-emptyness of the set of set-wise stable matchings in the many-to-many matching model.
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�Pf2=�P 0f2

;

fw1g fw3g fw2g

fw1; w3g fw2; w3g

fw1; w2g

where S ! S 0 means that S 0 � S (S 0 � S and S 6= S 0) and omitted nonempty subsets are
unordered with respect to all other subsets of APf2 : However,

�P 00f2

;

fw1g fw2g fw3g

fw1; w2g fw2; w3g

fw1; w3g

Observe that, since fw1; w3g �P 00f2 fw1; w2g but fw1; w2g �Pf2 fw1; w3g, �P 00f2 6=�Pf2 : Con-
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sider
P 000f2

fw1; w2g
fw1; w3g
fw2; w3g
fw2g
fw1g
fw3g
;;

which di¤ers from Pf2, P
0
f2
, and P 00f2. Since �P 000f2=�P 0f2=�Pf2 6=�P 00f2 we will be able to

deduce, as a consequence of Theorem 1, that S(P 000f2 ; P̂�f2) = S(P 0f2 ; P̂�f2) = S(Pf2 ; P̂�f2)

for all P̂�f2 ; and that there exists �P�f2 such that S(P
00
f2
; �P�f2) 6= S(Pf2 ; �P�f2). �

Subsection 3.2 below presents formally the notion of a semilattice which will be needed

to state our results. We adapt this notion to our setting where the partially ordered set is

a (�nite) subfamily of subsets of workers.11

3.2 Partial Orders, Joins, and Semilattices

Let A be a non-empty subfamily of subsets of W containing the empty set; i.e., A � 2W

and ; 2 A. A partial order � on A is a re�exive, transitive, and antisymmetric binary

relation on A; that is, for all S; S 0; S 00 2 A, S � S, [S � S 0 � S 00] =) [S � S 00], and [S � S 0

and S 0 � S] =) [S = S 0]. Given S; S 0 2 A we write S � S 0 to denote that S � S 0 and

S 6= S 0. Then, � is a transitive and antire�exive (S � S for no S) binary relation on A.
The set S is called acceptable (according to �) if S � ;. Given a partial order � on A and
a subfamily X � A, de�ne the set of upper bounds of X as ub�X = fS 2 A j S � S 0 for
all S 0 2 Xg and the least upper bound of X as lub�X = T , where T 2 ub�X and, for all

T 0 2 ub�X, T 0 � T: Given a partial order � on A, de�ne the binary operation _ on A as
follows: for S; S 0 2 A, S _ S 0 = lub�fS; S 0g. Observe that, in general, lub�fS; S 0g may not
exist; for instance, consider W = fw1; w2; w3g and let A = ffw1g; fw2g; fw3g; ;g and � be
such that fw1g � fw3g and fw2g � fw3g. Then, lub�ffw1g; fw2gg does not exist because
ub�ffw1g; fw2gg = ;. However, by the antisymmetry of �, if it exists, the lub� is unique.
11See Birkho¤ (1979) for a general de�nition.
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De�nition 4 The triple L = (A;�;_) is a semilattice if, for all S; S 0 2 A, lub�fS; S 0g
exists.12

Observe that although the binary operation _ follows from the partial order �, it will
be useful to refer to both in the notation of the semilattice. This is because there is an

(equivalent) algebraic approach where, instead of starting from the partial order �, one can
start from a binary operation as follows. A join _ on A is an idempotent, commutative,
and associative binary relation on A; that is, for all S; S 0; S 00 2 A; S_S = S, S_S 0 = S 0_S,
and S _ (S 0 _ S 00) = (S _ S 0)_ S 00. Given a join _ on A; de�ne the partial order � on A as
follows: for all S; S 0 2 A;

S � S 0 if and only if S = S _ S 0: (1)

Indeed, both approaches are equivalent in the sense that the partial order obtained from _
is � (i.e., the partial order from which _ is de�ned).

3.3 The Semilattice of the Choice of the Union: De�nition and

Properties

Let f 2 F and Pf be given. Assume Pf is substitutable. De�ne the family of subsets of

workers

APf = fS 2 2W j S = Ch(S; Pf )g (2)

and the partial order �Pf on APf as follows: for all S; S 0 2 APf ;

S �Pf S 0 if and only if S = Ch(S [ S 0; Pf ): (3)

It is easy to see that for any preference relation Pf the binary relation �Pf is a partial order
on APf ; i.e., �Pf is re�exive, transitive, and antisymmetric. Moreover, Proposition 1 below
12Speci�cally, we should have referred to L = (A;�;_) as a join-semilattice. Moreover, if a join-

semilattice L = (A;�;_) has the property (as it will be in the sequel) that all sets in A are acceptable,

then ; 2 A is the smallest element of �. Birkho¤ (page 23, 1979) shows that any join-semilattice with a
smallest element is also a lattice. Hence, L = (A;�;_) is indeed a lattice (i.e., a join-semilattice with the
property that every pair of sets has a geatest lower bound). Since for our pourpose the interesting binary

operation is the join _, not the meet ^, we will not emphasize this fact and still refer to L = (A;�;_) as
a semilattice.
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says that the triple (APf ;�Pf ;_Pf ) is a semilattice. We call it the semilattice of the choice
of the union.

Proposition 1 Let Pf be a substitutable preference relation. Then, the triple (APf ;�Pf
;_Pf ) is a semilattice.

Proof We will show that for all S; S 0 2 APf , lub�Pf fS; S
0g exists by showing that

lub�Pf fS; S
0g = Ch(S [ S 0; Pf ): (4)

Let X = S [ S 0 and Y = Ch(S [ S 0; Pf ) [ S: Clearly, Ch(X;Pf ) � Y � X. Hence, by

condition (2.6) in Blair (1988),13 Ch(X;Pf ) = Ch(Y; Pf ): By de�nition of �Pf , Ch(S [
S 0; Pf ) �Pf S. Similarly, Ch(S [ S 0; Pf ) �Pf S 0. Thus, Ch(S [ S 0; Pf ) is an upper bound
of fS; S 0g: Let T be an upper bound of fS; S 0g and assume,

Ch(S [ S 0; Pf ) �Pf T: (5)

Since T is an upper bound of fS; S 0g, T �Pf S and T �Pf S 0. By the de�nition of �Pf ,

T = Ch(T [ S; Pf ) = Ch(T [ S 0; Pf ): (6)

Hence, from (5),

Ch(S [ S 0; Pf ) = Ch(Ch(S [ S 0; Pf ) [ T; Pf ) by the de�nition of �Pf
= Ch(S [ S 0 [ T; Pf ) by Proposition 2.3 in Blair (1988)14

= Ch(S [ Ch(S 0 [ T; Pf ); Pf ) by Proposition 2.3 in Blair (1988)

= Ch(S [ T; Pf ) by (6)

= T by (6).

�

Given Pf , we denote by LPf the semilattice of the choice of the union (APf ;�Pf ;_Pf )
obtained by conditions (2) and (3). In Example 2 below we show that the conclusion of

Proposition 1 does not hold for non-substitutable preference relations.

13Condition (2.6) in Blair (1988) says that for all Pf and all X;Y 2 2W , Ch(X;Pf ) � Y � X implies

Ch(X;Pf ) = Ch(Y; Pf ):
14Proposition 2.3 in Blair (1988) says that the choice set of any substitutable preference relation Pf has

the property that for all X;Y 2 2W , Ch(X [ Y; Pf ) = Ch(Ch(X;Pf ) [ Y; Pf ).

12



Example 2 Let W = fw1; w2; w3; w4g be the set of workers. Consider the preference
relation

Pf

fw1; w2g
fw3; w4g
fw4g
fw3g
fw1g
fw2g
;:

Observe that Pf is not substitutable because w1 2 Ch(fw1; w2; w3; w4g; Pf ) and w1 =2
Ch(fw1; w3; w4g; Pf ). Note that APf = ffw1; w2g; fw3; w4g; fw1g; fw2g; fw3g; fw4g; ;g.
Since Ch(fw1g [ fw2g; Pf ) = fw1; w2g, Ch(fw1g [ fw2g; Pf ) is neither fw1g nor fw2g
and since Ch(fw3g [ fw4g; Pf ) = fw3; w4g, Ch(fw3g [ fw4g; Pf ) is neither fw3g nor
fw4g. Thus, fw1g �Pf fw2g; fw2g �Pf fw1g; fw3g �Pf fw4g; and fw4g �Pf fw3g:
On the other hand, Ch(fw1g [ fwig; Pf ) = Ch(fw2g [ fwig; Pf ) = fwig; for i = 3; 4;

imply fw4g �Pf fw1g; fw4g �Pf fw2g; fw3g �Pf fw1g; and fw3g �Pf fw2g: Thus,
fw3g; fw4g 2 ub�Pf ffw1g; fw2gg. Since fw3g and fw4g are not ordered through �Pf and
fw1; w2g �Pf fwig and fw3; w4g �Pf fwig, for i = 3; 4; lub�Pf ffw1g; fw2gg does not exist.
Hence, the partial order �Pf on APf is not a semilattice. �

Since the partial order �Pf inherits rationality properties of the choice sets, it may also
satisfy some additional properties.

First, to de�ne the notion of stability of a matching � we have assumed that a �rm f has

the possibility, when confronted with the set �(f), of choosing the best subset of workers

in �(f) according to Pf . Hence, we would like that the semilattice LPf has the following

property.

De�nition 5 A semilattice L = (A;�;_) is individually rational if for all S; S 0 2 A such
that S 0 � S, S � S 0:

Note that if a semilattice L = (A;�;_) is individually rational then A only contains
acceptable subsets of workers.
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Second, given a semilattice L = (A;�;_) we want that, for any two subsets S; S 0 2 A,
the least upper bound of fS; S 0g coincides with the least upper bound of the family of
subsets of S [ S 0 in A and, in turn, it is a subset of S [ S 0.

De�nition 6 A semilattice L = (A;�;_) is ordered if for all S; S 0 2 A; lub�fS; S 0g =
lub�fT 2 A j T � S [ S 0g � S [ S 0:

In Example 3 below we illustrate the two notions.

Example 3 LetW = fw1; w2; w3g be the set of workers and assume that the subfamily of
subsets is A = ffw1; w2g; fw2; w3g; fw1; w3g; fw1; w2; w3g; ;g � 2W : Consider the following
partial order � on A

�

;

fw1; w2g fw2; w3g

fw1; w3g

fw1; w2; w3g

The semilattice L = (A;�;_) is individually rational but it is not ordered since
lub�ffw1; w2g; fw1; w3gg = fw1; w3g 6= fw1; w2; w3g = lub�fT 2 A j T � fw1; w2g [
fw1; w3gg. Consider now the partial order �0 on A

14



�0

;

fw1; w2g fw1; w3g fw2; w3g

fw1; w2; w3g

The semilattice L0 = (A;�0;_0) is individually rational and ordered since
lub�0ffw1; w2g; fw1; w3gg = lub�fT 2 A j T � fw1; w2g [ fw1; w3gg = fw1; w2; w3g. �

Finally, we will need the notion of a closed semilattice.

De�nition 7 A semilattice L = (A;�;_) is closed if S 2 A and S 0 � S imply S 0 2 A:

Observe that neither L = (A;�;_) nor L0 = (A;�0;_0) in Example 3 are closed. How-
ever, the semilattice L00 = (A00;�00;_00), where A00 = 2fw1;w2;w3g and �00 is the following
partial order on A00

�00

;

fw1g fw2g fw3g

fw1; w2g
fw1; w3g fw2; w3g

fw1; w2; w3g
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is individually rational, ordered, and closed.

4 Preliminary Results and Strong Extensions

Our next result says that the semilattice of the choice of the union LPf = (APf ;�Pf ;_Pf )
obtained from a substitutable preference relation Pf by conditions (2) and (3) is individually

rational, ordered, and closed.

Proposition 2 Let Pf be a substitutable preference relation on 2W : Then, LPf = (APf ;�Pf
;_Pf ) is individually rational, ordered, and closed.

Proof The semilattice LPf = (APf ;�Pf ;_Pf ) is individual rational trivially.
To show that it is ordered, let S; S 0 2 APf : First, as we have already argued when

showing that LPf is a semilattice, condition (4) holds; i.e.,

lub�Pf fS; S
0g = Ch(S [ S 0; Pf ):

We claim that

Ch(S [ S 0; Pf ) = lub�Pf fT 2 APf j T � S [ S
0g: (7)

To see it, note that Ch(S [ S 0; Pf ) �Pf T for all T 2 APf such that T � S [ S 0. By the
de�nition of APf , Ch(S [ S 0; Pf ) 2 fT 2 APf j T � S [ S 0g: Hence, (7) follows.
To show that LPf is closed suppose that S 2 APf and S 0 � S. By de�nition of APf ,

S = Ch(S; Pf ). Since Pf is substitutable, for any w 2 S; Ch(Snfwg; Pf ) = Snfwg:
Iterating this property, if necessary, we obtain that S 0 = Ch(S 0; Pf ): Hence, S 0 2 APf .

Thus, LPf is closed. �

Now, we will change our point of view. Previously, starting from a substitutable prefer-

ence relation Pf we eliminated some orderings in Pf and constructed, using conditions (2)

and (3), an individually rational, ordered, and closed semilattice (APf ;�Pf ;_Pf ). Consider
now a semilattice L = (A;�;_). Since � may leave some pairs S; S 0 2 A unordered, we
may complete � to make it a preference relation. A particular way (there are many) of

completing � will be called a strong extension of the semilattice.

De�nition 8 Let f 2 F be given. A preference relation Pf on 2W is a strong extension

of the semilattice L = (A;�;_) if the following two properties hold:
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(E.1) For all S; S 0 2 A; S 0 � S implies S 0PfS:

(E.2) If S =2 A; then there exists S 0 2 A such that S 0 � S and S 0PfS:

De�nition 8 can be interpreted as a set of instructions on how to extend a partial order

on A to a complete preference relation on 2W : First, it has to keep all already existing or-

derings (this corresponds to the standard notion of an extension of a partial order as used

by Szpilrajn (1930)). Second, if a set is not an element of A; then we have freedom but

the set has to be worse than one of its subsets in A (for instance, the empty set). Finally,

pairs of sets in A that are not ordered by � can be freely ordered. The fact ; 2 A guar-
antees that, given a semilattice, we can always �nd a strong extension. Again, conditions

(E.1) and (E.2) do not uniquely identify a preference relation as a strong extension of a

semilattice. The preferences Pf2 and P
0
f2
in Example 1 are strong extensions of �Pf2 while

P 00f2 is not. Our main goal below will be to identify for each �rm equivalence classes of

substitutable preference relations with the property that all members in the same class are

strong extensions of the same semilattice.

The next two results are instrumental and they will be useful later on.

Lemma 1 Let Pf be a strong extension of the semilattice L = (A;�;_): Then, for all
S 2 2W , Ch(S; Pf ) 2 A:

Proof Assume S 2 2W is such that Ch(S; Pf ) =2 A. Since Pf is a strong extension of L,
there exists S 0 2 A; S 0  Ch(S; Pf ) such that

S 0PfCh(S; Pf ):

But S 0 � S contradicts the de�nition of choice set, because Ch(S; Pf ) is the most preferred
subset of S according to Pf : �

Lemma 2 Assume L = (A;�;_) is an individually rational, ordered, and closed semilat-
tice. Then, for all S; S 0 2 A and all w 2 S _ S 0, w 2 S _ fwg.

Proof Assume otherwise; that is, there exist S; S 0 2 A and w 2 S _ S 0 such that w =2
S _ fwg: Observe that, by closedness, fwg 2 A: We will show that

S = S _ fwg: (8)

17



By de�nition of _ and orderedness, S_fwg = lub�fS; fwgg � S[fwg: Since, by hypothesis,
w =2 S _ fwg; S _ fwg � S: On the other hand, by individual rationality, S � S _ fwg: By
the de�nition of _, S _ fwg � S: Hence, (8) holds.
De�ne R = (S _ S 0)nfwg. By closedness, R 2 A: By (8), R _ S = R _ (S _ fwg). By

orderedness, R _ (S _ fwg) � R [ (S _ fwg). Hence, and since w =2 R and w =2 S _ fwg,
w =2 R _ S � S [ S 0 and w 2 S [ S 0. Thus,

S _ S 0 � R _ S: (9)

Therefore,
R _ S _ fwg = R _ S by (8)

� S _ S 0 by (9).

Now, we claim that

R _ fwg = S _ S 0: (10)

First, by orderedness, R_fwg � R[fwg, and by de�nition of R, R[fwg = S_S 0: Hence,
by orderedness, R_fwg � S_S 0: By closedness, S_S 0 � R_fwg: Second, by orderedness,
R _ fwg = lub�fT 2 A j T � R [ fwgg: By de�nition of R; R _ fwg = lub�fT 2 A j T �
S _ S 0g: Thus, R _ fwg � S _ S 0: The two orderings imply that (10) holds. Therefore,

R _ S _ fwg = R _ fwg _ S because _ is commutative
= (S _ S 0) _ S by (10)

= S _ S 0 because _ is commutative and idempotent,

which contradicts that R _ S _ fwg � S _ S 0. �

In Proposition 3 we say that all strong extensions of individually rational, ordered, and

closed semilattices are substitutable.

Proposition 3 Let L = (A;�;_) be an individually rational, ordered, and closed semi-
lattice and assume Pf is a strong extension of L. Then, Pf is substitutable.

Proof Assume Pf is not substitutable. Then, there exist S and w;w0 2 S (w 6= w0) such
that w 2 Ch(S; Pf ) � �S and

w =2 Ch(Snfw0g; Pf ) � �S 0: (11)

18



By Lemma 1, �S; �S 0 2 A:We will prove that �S = �S_ �S 0: Assume otherwise; then,
�
�S _ �S 0

�
�

�S. Since Pf is a strong extension of L,�
�S _ �S 0

�
Pf �S; (12)

but
�S _ �S 0 � �S [ �S 0 � S: (13)

The �rst inclusion holds because L is ordered and the second one by the de�nition of the

choice set. Conditions (12) and (13) contradict that Ch(S; Pf ) = �S: Hence, w 2 �S _ �S 0:
Because L is closed, fwg 2 A. By Lemma 2, w 2 �S 0 _ fwg. Hence, and since w =2 �S 0,
�S 0 _ fwg � �S 0: Thus, because Pf is a strong extension of L,

( �S 0 _ fwg)Pf �S 0: (14)

By orderedness, �S 0 _ fwg � �S 0 [ fwg. Moreover, Snfw0g � �S 0 [ fwg since �S 0 � Snfw0g
and w 2 Snfw0g: Then, (14) contradicts that Ch(Snfw0g; Pf ) = �S 0: �

The non closed semilattice L0 = (A;�0;_0) of Example 3 shows that there are strong
extensions of individually rational and ordered semilattices that are not substitutable. For

instance, the strong extension
P 0f

fw1; w2; w3g
fw1; w2g
fw1; w3g
fw2; w3g

;
is not substitutable since w1 2 Ch(fw1; w2g; Pf ) while w1 =2 Ch(fw1g; Pf ) = ;.
In Proposition 4 we state that the following consistency property holds. Suppose we

start with an individually rational, ordered, and closed semilattice, and strongly extend

it. Then, using conditions (2) and (3), we can construct from this strong extension the

semilattice of the choice of the union. Then, this semilattice coincides with the semilattice

that we started with. Formally,

Proposition 4 Let Pf be a strong extension of an individually rational, ordered, and

closed semilattice L = (A;�;_). Then, L = (APf ;�Pf ;_Pf ).
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Proof First, we will show that A = APf : By Lemma 1, APf � A: Now, we show that if
S 2 A then S 2 APf : Assume S =2 APf ; i.e., S 6= Ch(S; Pf ): By Lemma 1, Ch(S; Pf ) 2
A: Since L is individually rational and S � Ch(S; Pf ), S � Ch(S; Pf ): Since Pf is a

strong extension of L, SRfCh(S; Pf ). But, S 6= Ch(S; Pf ) implies SPfCh(S; Pf ), which

contradicts the de�nition of the choice set. Thus, A � APf :
Second, we will show that if S; S 0 2 A then S _ S 0 = Ch(S [ S 0; Pf ): By Lemma 1,

Ch(S [S 0; Pf ) 2 A: Since Ch(S [S 0; Pf ) � S [S 0 and S _S 0 = lub�fT 2 A j T � S [S 0g,
by orderedness, (S _ S 0) � Ch(S [ S 0; Pf ): Since Pf is a strong extension of L,

(S _ S 0)RfCh(S [ S 0; Pf ): (15)

Since L is ordered, (S _ S 0) � (S [ S 0). Thus,

Ch(S [ S 0; Pf )Rf (S _ S 0): (16)

Conditions (15) and (16) imply that

S _ S 0 = Ch(S [ S 0; Pf ): (17)

By the de�nition of _Pf , S _Pf S 0 = lub�Pf fS; S
0g. By condition (4), S _Pf S 0 = Ch(S [

S 0; Pf ): By (17), S _ S 0 = S _Pf S 0: �

5 The Invariance Result

We are now ready to state and prove our main result of the paper.

Theorem 1 Let Pf and P 0f be two substitutable preference relations of f 2 F . Then,

LPf = LP 0f if and only if S(Pf ; P�f ) = S(P
0
f ; P�f ) for all substitutable P�f .

Proof ()) Let Pf and P 0f be two substitutable preference relations such that LPf = LP 0f .
Assume that P�f and � are such that � 2 S(Pf ; P�f ): Then, � 2 IR(Pf ; P�f ). Hence, for
all f̂ 2 F and all w 2 W;

�(f̂) = Ch(�(f̂); Pf̂ ) and �(w)Rw;: (18)
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By Lemma 1, �(f) 2 APf : Then, APf = AP 0f implies �(f) = Ch(�(f); P
0
f ): Condition (18)

implies that � 2 IR(P 0f ; P�f ): Assume � =2 S(P 0f ; P�f ). Then, there exist f̂ and w such

that (f̂ ; w) blocks � at P 0 = (P 0f ; P�f ); i.e., w =2 �(f̂);

f̂P 0w�(w) (19)

and

w 2 Ch(�(f̂) [ fwg; P 0
f̂
): (20)

Since P 0w = Pw, (19) is equivalent to

f̂Pw�(w): (21)

If f̂ 6= f; then (f̂ ; w) blocks � at (Pf ; P�f ), which contradicts that � 2 S(Pf ; P�f ): Hence,
f̂ = f: By Lemma 1, Ch(�(f)[fwg; P 0f ) 2 AP 0f ; and since, by Proposition 2, the semilattice
LP 0f is closed, fwg 2 AP 0f : Condition (20) and w =2 �(f) imply

(�(f) _P 0f fwg) �P 0f �(f): (22)

By fPw�(w) and � 2 S(Pf ; P�f ), (20) implies

�(f) = �(f) _Pf fwg: (23)

This contradicts (22) because LPf = LP 0f . Then, S(Pf ; P�f ) � S(P
0
f ; P�f ):Hence, S(Pf ; P�f ) =

S(P 0f ; P�f ):

(() Let Pf and P 0f be two substitutable preference relations and assume S(Pf ; P�f ) =
S(P 0f ; P�f ) for all substitutable P�f . To show that LPf = LP 0f ; we �rst show S 2 APf if and
only if S 2 AP 0f : Consider the following preference pro�le P�f : for all w 2 S, all w

0 =2 S;
and all f̂ 6= f ,

Pw Pw0 Pf̂

f ; ;
;:

The unique stable matching at (Pf ; P�f ) is �; where �(f) = S and �(f̂) = ; for all f̂ 6= f
(obviously, �(w0) = ; for all w0 =2 S): By hypothesis, S(Pf ; P�f ) = S(P 0f ; P�f ): Hence, �

is individually rational at (P 0f ; P�f ): Then, S = �(f) = Ch(�(f); P 0f ) = Ch(S; P 0f ). By

Lemma 1, S 2 APf :
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To prove that �Pf=�P 0f ; we will �rst show that for any S1; S2 2 APf ,

S1 = S1 _Pf S2 if and only if S1 = S1 _P 0f S2: (24)

Observe that if F = ffg then the result follows trivially by the de�nitions of �Pf and �P 0f .
Thus, assume jF j � 2. Consider any preference pro�le P�f where, for a �rm f 0 6= f , for all
w 2 S1nS2; all w0 2 S1 \ S2; all w00 2 S2nS1; all w000 =2 S1 [ S2; and all f̂ 6= f; f 0,

Pw Pw0 Pw00 Pw000 Pf 0 Pf̂

f 0 f f ; S2nS1 ;
f ; f 0 :::

; ; S1nS2
:::

;:

Observe that Pf 0 is not fully described and it may be completed by keeping it substitutable.

By S1 = S1 _Pf S2, Ch(S1; Pf ) = S1: We claim that for all T � S1, Ch(T; Pf ) \ (S2nS1) =
;. Assume w 2 Ch(T; Pf ) \ (S2nS1) 6= ; for some T � S1. By substitutability of Pf ,

w 2 Ch(T; Pf ) implies that w 2 Ch(S1; Pf ): Since w 2 S2nS1; w =2 S1, contradicting

that Ch(S1 [ S2; Pf ) = S1; which holds because S1 = S1 _Pf S2. Thus, the �rms-optimal
stable matching �F 2 S(Pf ; P�f ) is �F (f) = S1, �F (f

0) = S2nS1, and �F (f̂) = ; for all
f̂ 6= f; f 0: To see that, consider the deferred-acceptance algorithm in which �rms propose.

Observe �rst that f 0 proposes in the �rst step of the algorithm to S2nS1; and all these o¤ers
are accepted. Moreover, at any step of the algorithm in which f proposes, it proposes to

Ch(W 0; Pf ) for some set of workers W 0, where W 0 � S1; this is because all workers in S1
only receive o¤ers from f and all workers in S1nS2 do not receive o¤ers from f 0 since f 0

does not make any o¤er to the workers in S1, and none of the other �rms (if any) makes

any o¤er. By hypothesis, S(Pf ; P�f ) = S(P 0f ; P�f ): Hence, �F 2 S(P 0f ; P�f ): Moreover,
S1 = �F (f) = Ch(�F (f); P

0
f ): Assume that S1 6= S1 _P 0f S2: Then, there exists w

00 2 S2nS1
such that w00 2 S1 _P 0f S2: By Lemma 2, w

00 2 S1 _P 0f fw
00g. Then, S1 _P 0f fw

00g �P 0f S1:
Because LP 0f is closed, w

00 2 AP 0f . By de�nition of LP 0f , S1 _P 0f fw
00g �P 0f S1 implies

(S1 _P 0f fw
00g)P 0fS1: Then, w00 2 Ch(�F (f) [ fw00g; P 0f ): But fPw00f 0; because w00 2 S2nS1:

Thus, (f; w00) blocks �F at (P 0f ; P�f ); which contradicts that �F 2 S(P 0f ; P�f ): Hence,
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S1 = S1 _P 0f S2. Finally,

S1 �Pf S2 () S1 = S1 _Pf S2 by condition (3) and orderedness of LPf
() S1 = S1 _P 0f S2 by (24)

() S1 �P 0f S2 by condition (3) and orderedness of LP 0f .

Thus, LPf = LP 0f because APf = AP 0f and �Pf=�P 0f implies _Pf = _P 0f : �

Our result on the invariance of the set of stable matchings requires substitutability. In

Example 4 we show that there are two non-substitutable preference relations Pf and P 0f
with the property that S(Pf ; P�f ) = S(P 0f ; P�f ) for all P�f but LPf 6= LP 0f .

Example 4 Let W = fw1; w2; w3; w4g be the set of workers and let f 2 F . Consider the
two preference relations

Pf P 0f

fw1; w2g fw3; w4g
fw3; w4g fw1; w2g

; ;:

Observe that neither Pf nor P 0f are substitutable. Moreover, although APf = AP 0f =

ffw1; w2g; fw3; w4g; ;g � 2W the two semilattices of the choice of the union obtained by

conditions (2) and (3) from Pf and P 0f are di¤erent and, respectively, equal to

�Pf �P 0f

;

fw3; w4g

fw1; w2g

;

fw1; w2g

fw3; w4g

Hence, LPf 6= LP 0f . Let P�f be arbitrary. Assume � 2 S(Pf ; P�f ): We will show that
� 2 S(P 0f ; P�f ): First, assume � =2 S(P 0f ; P�f ) and let P 0 = (P 0f ; P�f ): Since IR(Pf ; P�f ) =
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IR(P 0f ; P�f ), there exist f̂ 2 F and w 2 W such that (f̂ ; w) blocks � at (P 0f ; P�f ); i.e.,

f̂P 0w�(w) (25)

and

w 2 Ch(�(f̂) [ fwg; P 0
f̂
):

Since Pw = P 0w, (25) implies f̂Pw�(w). If f̂ 6= f; then (f̂ ; w) blocks � at (Pf ; P�f ) and

this contradicts that � 2 S(Pf ; P�f ): Hence, f̂ = f . We consider the following three cases,
depending on the set �(f):

Case 1: �(f) = fw1; w2g: Then, for all w =2 �(f); �(f) = Ch(�(f) [ fwg; P 0f ): Thus, for all
w =2 �(f), (f; w) does not block � at (P 0f ; P�f ):

Case 2: �(f) = fw3; w4g: Then, for all w =2 �(f), �(f) = Ch(�(f) [ fwg; P 0f ): Thus, for all
w =2 �(f), (f; w) does not block � at (P 0f ; P�f ):

Case 3: �(f) = ;: Then, for all w =2 �(f); we have that �(f) = Ch(�(f) [ fwg; P 0f ): Thus,
for all w =2 �(f), (f; w) does not block � at (P 0f ; P�f ):

These three cases show that S(Pf ; P�f ) � S(P 0f ; P�f ): Using a similar argument we can

show that S(P 0f ; P�f ) � S(Pf ; P�f ): Then, for all P�f , S(Pf ; P�f ) = S(P 0f ; P�f ); and

LPf 6= LP 0f : �

6 Concluding Remark

The main implication of Theorem 1 is the following. Let P = (Pf1 ; :::; Pfn ;Pw1 ; :::; Pwm) be

a substitutable pro�le of preference relations of agents. For each fi 2 F , i = 1; ::; n, Pfi is
a complete order on a set of cardinality 2jW j. Identify, using (2), the subfamily of subsets

of workers APfi that are the choice of themselves. Construct, using (3), the partial order

�Pfi on APfi . All information needed to compute the set of stable matchings at prefer-
ence pro�le P is embedded in the pro�le �= (�Pf1 ; :::;�Pfn ;Pw1 ; :::; Pwm). Moreover, any
preference pro�le P 0 = (P 0f1 ; :::; P

0
fn
;Pw1 ; :::; Pwm) such that �P 0fi=�Pfi for all i = 1; :::; n

has the property that S(P ) = S(P 0). Hence, we can partition the set of substitutable

preference pro�les into equivalence classes in such a way that all preference pro�les in the

same class have the same set of stable matchings. A pro�le �= (�f1 ; :::;�fn ;Pw1 ; :::; Pwm)
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of partial orders may be used as the representative of each class. All substitutable pref-

erence pro�les in which preference relations of �rms are strong extensions of their corre-

sponding partial order belong to the same equivalence class (see the �gure below). Thus,

any centralized mechanism that proposes a stable matching for each preference pro�le

P = (Pf1 ; :::; Pfn ;Pw1 ; :::; Pwm) can use as input, instead, the corresponding pro�le of par-

tial orders �= (�Pf1 ; :::;�Pfn ;Pw1 ; :::; Pwm).

Set of substitutable preference pro�les Representative

� P = (Pf1 ; :::; Pfn ;Pw1 ; :::; Pwm)
� ...
� P 0 = (P 0f1 ; :::; P

0
fn
;Pw1 ; :::; Pwm)

�!
�= (�f1 ; :::;�fn ;Pw1 ; :::; Pwm)

S(P ) = ::: = S(P 0)

::: :::

� �P = ( �Pf1 ; :::; �Pfn ; �Pw1 ; :::; �Pwm)
� ...
� �P 0 = ( �P 0f1 ; :::; �P

0
fn
; �Pw1 ; :::; �Pwm)

�!
�� = (��f1 ; :::; ��fn ; �Pw1 ; :::; �Pwm)

S( �P ) = ::: = S( �P 0)

::: :::

� P̂ = (P̂f1 ; :::; P̂fn ; P̂w1 ; :::; P̂wm)
� ...
� P̂ 0 = (P̂ 0f1 ; :::; P̂

0
fn
; P̂w1 ; :::; P̂wm)

�!
�̂ = (�̂f1 ; :::; �̂fn ; P̂w1 ; :::; P̂wm)

S(P̂ ) = ::: = S(P̂ 0)
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