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1 Introduction

One of the most significant results in the matching literature is the one
establishing that the set of stable matchings has a lattice structure. A set
has a lattice structure if we can define on it a partial ordering and two
binary operations (the least upper bound and the greatest lower bound).
The structure is important for at least two reasons. First, it indicates that
even if agents of the same side of the market compete for agents of the
other side, this conflict is attenuated since, on the set of stable matchings,
agents of the same side have a coincidence of interests. Second, it has proved
to be very useful: many algorithms that yield stable matchings (and are
used in real centralized markets) are based on this lattice structure, or some
related properties.1 The lattice structure of the set of stable matchings for
the marriage model was first established by Knuth (1976), who attributed
the result to Conway. Roth (1985) showed that the least upper bound and
the greatest lower bound used by Knuth (1976) did not work in a more
general many-to-many model. Blair (1988) proposed a natural extension
of the partial ordering used in Knuth (1976). However, this was flawed
because its least upper bound and greatest lower bound were unnatural and
intrincate since they were obtained as the outcomes of nontrivial sequences of
matchings. Roth and Sotomayor (1990) extended the result of the marriage
model to the college admissions problem with responsive preferences. Our
objective here is to further extend their result by proposing, for a many-to-
one model with substitutable and q−separable preferences, two very natural
binary operations that give a lattice structure to the set of stable matchings.
Roth and Sotomayor (1990) referred to the “college admissions model

with substitutable preferences” as the class of allocation problems consist-
ing of matching agents who can be divided, from the very beginning, into
two disjoint subsets: institutions (called firms) and individuals (called work-
ers). Firms are restricted to having substitutable preferences over subsets of
workers, while workers may have all possible (strict) orderings over the set of
firms. Each firm, on one side, has to be matched with a group of workers, on
the other side, although both, firms and workers, may remain unmatched. A

1Roth (1984, 1986, 1990, and 1991), Mongell and Roth (1991), Roth and Xing (1994),
and Romero-Medina (1997) are examples of papers studying particular matching prob-
lems like entry-level professional labor markets, student admissions at colleges, american
sororities, etc. See Gusfield and Irving (1989) for algorithms exploiting the structure of
the set of stable matchings.
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matching µ is called stable if all agents have acceptable partners and there
is no unmatched worker-firm pair who both would prefer to be matched to
each other rather than staying with their current partners.
In the two more specific models already mentioned at the beginning of

this introduction, the marriage model and the college admissions problem
with responsive preferences,2 the set of stable matchings has a special lattice
structure. We can define on it the partial ordering ºF that has µ ºF µ0
if every firm considers the set of partners in matching µ at least as good
as the set of partners in matching µ0. Replacing “firm” by “worker” in the
definition above we obtain another partial ordering ºW which coincides with
¹F . Moreover, given two stable matchings we can first let firms choose the
best subset of workers and second, we can let them choose the worse one;
these are usually called the “pointing” functions and they are the least upper
bound and the greatest lower bound relative to the partial order ºF (we have
already referred to them as binary operations). Surprisingly, in both cases
we get another stable matching. Moreover, the stable matching obtained
when firms choose the best set of partners is in fact the one we would have
obtained if we had let workers choose the worse of the two firms; and vice
versa, the one obtained by letting firms choose the worse subset is in fact the
same one obtained after workers had chosen their best partner.
In this paper we identify a weaker condition than responsiveness, called

separability with quota, or q−separability, that together with substitutability
partly restores the natural interpretation of the lattice structure of the set
of stable many-to-one matchings. Moreover, we also show that even under
q−separable and substitutable preferences the classical pointing functions
may not be matchings (see Examples 1 and 2). Roth (1985) already had a
counterexample showing that this may be the case for a more general many-
to-many model. We want to emphasize that our examples have a genuine
interest and they are not a consequence of Roth’s (1985) negative result since
our model is much more specific.
The paper has also a positive side. We show that, under q−separable

and substitutable preferences of firms, and given two stable matchings, if we
only ask to each worker to choose the best firm of the two, we obtain an
stable matching; similarly, if we ask them to choose the worst one (Theorem
1). Moreover, with these two “pointing” functions for the workers, the set of

2See Roth and Sotomayor (1990) for a precise and formal definition of responsive pref-
erences as well as for a masterful analysis of both models.
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stable matchings has a very natural lattice structure with the partial order
ºW (Corollary 3). Finally, combining our result (Theorem 1) and a result
in Blair (1988) we exhibit another partial order (¹W , the “opposite” unani-
mous partial order of the workers) that together with these two new pointing
functions endow the set of stable matchings with another lattice structure
(Corollary 4).
The paper is organized as follows. In Section 2 we present the preliminary

notation and definitions. Section 3 contains the definition of a lattice and the
statements of the results. Finally, Section 4 contains the proof of Theorem
1, the key result of the paper.

2 Preliminaries

There are two disjoint sets of agents, the set of n firms F and the set of m
workers W. Each firm F ∈ F has a strict, transitive, and complete preference
relation P (F ) over the set of all subsets of W, and each worker has a strict,
transitive, and complete preference relation P (w) over F ∪ ∅. Preferences
profiles are (n+m)-tuples of preference relations and they are represented by
P = (P (F1) , ..., P (Fn) ;P (w1) , ..., P (wm)). Given a preference relation of a
firm P (F ) the subsets of workers preferred to the empty set by F are called
acceptable; therefore, we are allowing that firm F may prefer not hiring
any worker rather than hiring unacceptable subsets of workers. Similarly,
given a preference relation of a worker P (w) the firms preferred by w to the
empty set are called acceptable; in this case we are allowing that worker w
may prefer to remain unemployed rather than working for an unacceptable
firm. To express preference relations in a concise manner, and since only
acceptable partners will matter, we will represent preference relations as lists
of acceptable partners. For instance,

P (Fi) = {w1, w3} , {w2} , {w1} , {w3}
indicates that {w1, w3}P (Fi) {w2}P (Fi) {w1}P (Fi) {w3}P (Fi) ∅ and

P (wj) = F1, F3

indicates that F1P (wj)F3P (wj) ∅.
The assignment problem consists of matching workers with firms main-

taining the bilateral nature of their relationship and allowing for the possi-
bility that both, firms and workers, may remain unmatched. Formally,
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Definition 1 A matching µ is a mapping from the set F ∪W into the set
of all subsets of F ∪W such that for all w ∈W and F ∈ F:

1. Either |µ (w) | = 1 and µ (w) ⊆ F or else µ (w) = ∅.
2. µ (F ) ∈ 2W .
3. µ (w) = F if and only if w ∈ µ (F ) .3

A matching µ is said to be one-to-one if firms can hire at most one worker;
namely, condition 2 is replaced by: Either |µ (F )| = 1 and µ (F ) ⊆W or else
µ (F ) = ∅. The model in which all matchings are one-to-one is also known in
the literature as themarriage model. To represent matchings concisely we will
follow the widespread notation where, for instance, given F = {F1, F2, F3}
and W = {w1, w2, w3, w4}

µ =

µ
F1 F2 F3 ∅

{w3, w4} {w1} ∅ {w2}
¶

represents the matching where firm F1 is matched to workers w3 and w4, firm
F2 is matched to worker w1, and firm F3 and worker w2 are unmatched.
Let P be a preference profile. Given a set S ⊆ W, let Ch (S, P (F ))

denote firm F ’s most-preferred subset of S according to its preference or-
dering P (F ). A matching µ is blocked by a worker w if ∅P (w)µ (w); that
is, worker w prefers being unemployed rather than working for firm µ (w).
Similarly, µ is blocked by a firm F if µ (F ) 6= Ch (µ (F ) , P (F )). We say
that a matching is individually rational if it is not blocked by any individual
agent. A matching µ is blocked by a worker-firm pair (w,F ) if w /∈ µ (F ),
w ∈ Ch (µ (F ) ∪ {w} , P (F )), and FP (w)µ (w); that is, if they are not
matched through µ, firm F wants to hire w, and worker w prefers firm F
rather than firm µ (w).

Definition 2 A matching µ is stable if it is not blocked by any individual
agent or any firm-worker pair.

Given a preference profile P , denote the set of stable matchings by S (P ).
It is easy to construct examples of preference profiles with the property that

3We will often abuse notation by omitting the brackets to denote a set with a unique
element. For instance here, we write µ (w) = F instead of µ (w) = {F}.
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the set of stable matchings is empty. These examples share the feature that
at least one firm regards a subset of workers as being complements. This is
the reason why the literature has made use of the restriction that workers are
regarded as substitutes in the sense that firms continue to want to employ a
worker even if other workers become unavailable.4

Definition 3 A firm F ’s preference ordering P (F ) satisfies substitutabil-
ity if for any set S containing workers w and w̄ (w 6= w̄), if w ∈ Ch (S, P (F ))
then w ∈ Ch (S\ {w̄} , P (F )).

A preference profile P is substitutable if for each firm F , the preference
ordering P (F ) satisfies substitutability.
Roth and Sotomayor (1990) proved that when firms have substitutable

preferences, the set of stable matchings is always nonempty and coincides
with the weak core; that is, there is no loss of generality if we assume that all
blocking power is carried out by either individual agents or by firm-worker
pairs. Moreover, the deferred-acceptance algorithms produce either the firm-
optimal stable matching µF or the worker-optimal stable matching µW , de-
pending on whether the firms or the workers make the offers. The firm
(worker)-optimal stable matching is unanimously considered by all firms (re-
spectively, workers) to be the best among all stable matchings.
We will assume that firms’ preferences satisfy a further restriction called

q−separability.5 This is based on two ideas. First, separability, which
says that the division between good workers (wP (F ) ∅) and bad workers
(∅P (F )w) guides the ordering of subsets in the sense that adding a good
worker leads to a better set, while adding a bad worker leads to a worse set.6

Second, each firm F has in addition a maximum number of positions to be
filled: its quota qF . This limitation may arise from, for example, technologi-
cal, legal, or budgetary reasons. Since we are interested in stable matchings
we incorporate it in the preference ordering of the firm. Therefore, even
if the number of good workers for firm F is larger than its quota qF , all

4Kelso and Crawford (1982) were the first to use this property (under the name of
“gross substitutability condition”) in a cardinal matching model with salaries.

5See Martínez, Massó, Neme, and Oviedo (2000) for a detailed discussion of this re-
striction.

6Sönmez (1996) and Dutta and Massó (1997) have used separable preferences in match-
ing models. It is a condition that has been extensively used in social choice; see, for
instance, Barberà, Sonneschein, and Zhou (1991).
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sets of workers with cardinality strictly larger than qF will be unacceptable.
Formally,

Definition 4 A firm F ’s preference ordering P (F ) over sets of workers is
qF−separable if: (a) for all S (W such that |S| < qF and w /∈ S we have
that (S ∪ {w})P (F )S if and only if wP (F )∅, and (b) ∅P (F )S for all S such
that |S| > qF .
For the purpose of studying the set of stable matchings, condition (b) in

this definition could be replaced by the following condition: |Ch (S, P (F ))| ≤
qF for all S such that |S| > qF . We choose condition (b) since it is simpler.
Sönmez (1996) used an alternative approach which consists of deleting con-
dition (b) in the definition but then requiring in the definition of a matching
that |µ (F )| ≤ qF for all F ∈ F .
Given a set of firms F , we will denote by q = (qF )F∈F the list of quotas

and we will say that a preference profile P is q−separable if each P (F ) is
qF−separable. In principle we may have firms with different quotas. It is
easy to construct examples which show that, in general and given a list of
quotas q, the sets of q−separable and substitutable preferences are unrelated.
Moreover, even if all firms have q—separable preferences the set of stable
matchings may be empty.
From now on we will assume that firms have q-separable and substitutable

preferences. Martínez, Massó, Neme, and Oviedo (2000) establishes the fact
that, under these assumptions, agents are either “single” or matched in all
stable matchings.7 Since we will use this fact later on we state it formally as
a Remark.

Remark 1 Assume firms have q—separable and substitutable preferences. If
an agent is single in a stable matching µ, then he is single in any stable
matching µ0.

3 The lattice structure of the set of stable
matchings

In our context we can define a lattice on S (P ) if there exist a partial order º
and two binary operations ∨ and ∧ on S (P ) such that for all µ1, µ2, ν ∈ S (P )
the following properties hold:

7We say that w and F are single in a matching µ if µ (w) = ∅ and µ (F ) = ∅.
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(1) µ1 ∨ µ2 ∈ S (P ).
(2) µ1 ∧ µ2 ∈ S (P ).
(3) µ1 ∨ µ2 º µ1 and µ1 ∨ µ2 º µ2.
(4) µ1 º µ1 ∧ µ2 and µ2 º µ1 ∧ µ2.
(5) [ν º µ1 and ν º µ2] =⇒ [ν º µ1 ∨ µ2].
(6) [µ1 º ν and µ2 º ν] =⇒ [µ1 ∧ µ2 º ν].

Conditions (1) and (2) say that ∨ and ∧ are binary operations on S (P ).
Conditions (3), (4), (5), and (6) say that µ1∨µ2 and µ1∧µ2 are, respectively,
the least upper bound and the greatest lower bound of µ1 and µ2 according
to the partial order º. The quadruple (S (P ) ,º,∨,∧) is called a lattice on
S (P ).
We will explore several possibilities of defining partial orderings and bi-

nary operations needed to construct a lattice on S (P ). First, we define the
unanimous partial orders ºF and ºW as follows:

µ1 ºF µ2 ⇔ µ1R (F )µ2 for all F ∈ F .
µ1 ºW µ2 ⇔ µ1R (w)µ2 for all w ∈W.

We are following the convention of extending preferences from the original
sets (2W andF∪∅) to the set of matchings. However, we now have to consider
weak orderings since the matchings µ1 and µ2 may associate an individual
with the same partner. These orderings are denoted by R (F ) and R (w).
For instance, to say that all firms prefer matching µF to any stable matching
means that for any stable matching µ we have that µFR (F )µ for every
F ∈ F (that is, either µF (F ) = µ (F ) or else µF (F )P (F )µ (F )).
Second, we consider the natural extension of the “pointing” function used

in the marriage and college admissions models. Given two matchings µ1 and
µ2, suppose we are letting firms select the best set of workers assigned to
them through µ1 and µ2. Simultaneously, we are letting workers select the
worst firm matched with them through µ1 and µ2. In this way, define the
pointing function µ1 ∨F µ2 on F ∪W by:

µ1 ∨F µ2 (F ) =
½
µ1 (F ) if µ1P (F )µ2
µ2 (F ) otherwise

for all F ∈ F and

µ1 ∨F µ2 (w) =
½
µ1 (w) if µ2P (w)µ1
µ2 (w) otherwise

for all w ∈W.
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Symmetrically, given two matchings µ1 and µ2, suppose we are letting firms
select the worst set of workers assigned to them through µ1 and µ2, and
simultaneously, we are letting workers select the best firm matched with
them through µ1 and µ2. In this way, define the pointing function µ1 ∧F µ2
on F ∪W by:

µ1 ∧F µ2 (F ) =
½
µ2 (F ) if µ1P (F )µ2
µ1 (F ) otherwise

for all F ∈ F and

µ1 ∧F µ2 (w) =
½
µ2 (w) if µ2P (w)µ1
µ1 (w) otherwise

for all w ∈W.

Analogously, define the opposite pointing functions on F ∪W by:

µ1 ∨W µ2 (w) =
½
µ1 (w) if µ1P (w)µ2
µ2 (w) otherwise

for all w ∈W,

µ1 ∨W µ2 (F ) =
½
µ1 (F ) if µ2P (F )µ1
µ2 (F ) otherwise

for all F ∈ F ,

µ1 ∧W µ2 (w) =
½
µ2 (w) if µ1P (w)µ2
µ1 (w) otherwise

for all w ∈W, and

µ1 ∧W µ2 (F ) =
½
µ2 (F ) if µ2P (F )µ1
µ1 (F ) otherwise

for all F ∈ F .

The lattice theorem for the marriage model (Knuth (1976)) and the col-
lege admissions problem (Roth and Sotomayor (1990)) says that (S (P ) ,ºF ,∨F ,∧F)
and (S (P ) ,ºW ,∨W ,∧W) are lattices on S (P ). Moreover, if µ1 and µ2 are
stable matchings, then µ1 ºF µ2 ⇔ µ2 ºW µ1, µ1 ∨F µ2 = µ1 ∧W µ2,
and µ1 ∧F µ2 = µ1 ∨W µ2. To see that in our many-to-one framework,
with q−separable and substitutable preferences, (S (P ) ,ºF ,∨F ,∧F) and
(S (P ) ,ºW ,∨W ,∧W)may not be lattices on S (P ) consider Example 1 below.
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Example 1. Let F = {F1, F2} and W = {w1, w2, w3, w4} be the two sets
of agents with the profile of preferences P , where

P (F1) = {w1, w2}, {w1, w3}, {w2, w4}, {w3, w4}, {w1, w4}, {w2, w3}, {w1}, {w2},
{w3}, {w4} ,

P (F2) = {w3, w4}, {w2, w4}, {w1, w3}, {w1, w2}, {w1, w4}, {w2, w3}, {w4}, {w3},
{w2}, {w1} ,

P (w1) = F2, F1,
P (w2) = F2, F1,
P (w3) = F1, F2, and
P (w4) = F1, F2.

It is easy to see that both, P (F1) and P (F2) are 2-separable and substi-
tutable. However, they are not responsive since {w2, w4}P (F1){w2, w3} and
{w1, w3}P (F2){w2, w3} but {w3}P (F1) {w4} and {w2}P (F2) {w1}. More-
over, the set of stable matchings consists of the following four matchings:

µF =
µ

F1 F2
{w1, w2} {w3, w4}

¶
,

µ1 =

µ
F1 F2

{w1, w3} {w2, w4}
¶
,

µ2 =

µ
F1 F2

{w2, w4} {w1, w3}
¶
, and

µW =

µ
F1 F2

{w3, w4} {w1, w2}
¶
.

Consider the two stable matchings µ1 and µ2. Since µ1 (F1) = {w1, w3}P (F1) {w2, w4} =
µ2 (F1) and µ1 (w3) = F1P (w3)F2 = µ2 (w3) we have that µ1 ∨F µ2 (F1) =
{w1, w3}, µ1∨F µ2 (w3) = F2, µ1∨W µ2 (F1) = {w2, w4}, and µ1∨W µ2 (w3) =
F1. Therefore, the pointing functions µ1 ∨F µ2 and µ1 ∨W µ2 are not even
matchings.

Now, we could first redefine the pointing functions of the firms in two
ways by, given matchings µ1 and µ2, only asking each firm to select the best
(the worst) set of workers. Namely, given µ1 and µ2, define the function
µ1∨Fµ2 on F ∪W by:

µ1∨Fµ2 (F ) =
½
µ1 (F ) if µ1P (F )µ2
µ2 (F ) otherwise

for all F ∈ F and
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µ1∨Fµ2 (w) = F if and only if w ∈ µ1∨Fµ2 (F ) for all w ∈W.
Symmetrically, define the pointing function µ1∧Fµ2 on F ∪W by associating
with each firm the worst set of workers and with each worker the correspond-
ing firm that selects him, if any.
However, Example 2 below shows that these pointing functions are not

binary operations because again, µ1∨Fµ2 and µ1∧Fµ2 may not be matchings
even if µ1 and µ2 are stable and firms have substitutable and q−separable
preferences.

Example 2. Let F = {F1, F2} and W = {w1, w2, w3, w4} be the two sets
of agents with the substitutable and (2, 2)−separable profile of preferences
P , where

P (F1) = {w1, w2}, {w1, w3}, {w2, w4}, {w3, w4}, {w1, w4} , {w2, w3} , {w1},
{w2}, {w3}, {w4} ,

P (F2) = {w3, w4}, {w1, w3}, {w2, w4}, {w1, w2}, {w1, w4} , {w2, w3} , {w4},
{w3}, {w2}, {w1} ,

P (w1) = F2, F1,
P (w2) = F2, F1,
P (w3) = F1, F2, and
P (w4) = F1, F2.

Notice that P is not responsive. Consider the following stable matchings

µ1 =

µ
F1 F2

{w1, w3} {w2, w4}
¶
and

µ2 =

µ
F1 F2

{w2, w4} {w1, w3}
¶
.

In this case, neither µ1∨Fµ2 nor µ1∧Fµ2 are matchings because µ1∨Fµ2 (F1) =
µ1∨Fµ2 (F2) = {w1, w3} and µ1∧Fµ2 (F1) = µ1∧Fµ2 (F2) = {w2, w4}.
Second and definitely, we can redefine the pointing functions for the work-

ers also in two ways by, given matchings µ1 and µ2, only asking each worker
to select the best (the worst) firm. Namely, given µ1 and µ2, define the
function µ1∨Wµ2 on F ∪W by:

µ1∨Wµ2 (w) =
½
µ1 (w) if µ1P (w)µ2
µ2 (w) otherwise

for all w ∈W and
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µ1∨Wµ2 (F ) = {w : µ1∨Wµ2 (w) = F} for all F ∈ F .

Symmetrically, define the pointing function µ1∧Wµ2 on F ∪W by matching
each worker with his worst firm and each firm with the corresponding set of
workers that selected it, if any.
We can now state the main result of the paper.

Theorem 1 Let P be a profile of substitutable and q−separable preferences
and assume that µ1 and µ2 are stable. Then, µ1∧Wµ2 and µ1∨Wµ2 are both
stable matchings.

The proof that µ1∧Wµ2 is stable will consist of two steps. We will first
note, by applying Theorem 7 in Roth (1985), that the matching obtained by
giving to each firm the “choice set of the union of µ1 and µ2” is stable. Second,
Proposition 2 below will establish that this matching is indeed µ1∧Wµ2.

Definition 5 Given matchings µ1 and µ2 the choice set of the union of
µ1 and µ2 is the function λ on F ∪W defined by:

λ(F ) = Ch(µ1(F ) ∪ µ2(F ), P (F )), for F ∈ F and

λ (w) = F if and only if w ∈ λ (F ) , for w ∈W.

Proposition 2 Let P be a profile of substitutable and q−separable prefer-
ences and assume that µ1 and µ2 are two stable matchings. Then, the choice
set of the union of µ1 and µ2 is equal to µ1∧Wµ2; that is, λ = µ1∧Wµ2.

The following example, taken from Roth (1985), shows that Theorem 1,
as well as Proposition 2, are false without the q−separability condition.
Example 3. (Roth (1985) Let F = {F1, F2, F3, F4, F5} be the set of firms
and W = {w1, w2, w3, w4, w5, w6} be the set of workers. As in Roth (1985),
it will not be necessary to specify the full preference ordering of each agent,
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since they may be extended in several ways and still preserve the substi-
tutability of the firms’ preferences. The preference profile is as follows:

P (F1) = {w4} , {w1} , {w2, w3, w5, w6} , ..., {w5} , ...
P (F2) = {w2} , {w1, w3} , ...
P (F3) = {w3} , {w2} , ...
P (F4) = {w5} , {w4, w6} , ...
P (F5) = {w6} , {w5} , ...
P (w1) = F2, F1, ...
P (w2) = F1, F3, F2, ...
P (w3) = F1, F2, F3, ...
P (w4) = F4, F1, ...
P (w5) = F1, F5, F4, ...
P (w6) = F1, F4, F5, ...

Notice that P (F1), P (F2), and P (F4) are not q−separable. Consider the
following two stable matchings

µ1 =

µ
F1 F2 F3 F4 F5
{w1} {w2} {w3} {w4, w6} {w5}

¶
and

µ2 =

µ
F1 F2 F3 F4 F5
{w4} {w1, w3} {w2} {w5} {w6}

¶
.

First, it is easy to check that µ1∧Wµ2 (F1) = {w1, w4} since µ1∧Wµ2 (w1) =
F1 and µ1∧Wµ2 (w4) = F1. However, λ (F1) = {w4} sinceCh (µ1 (F1) ∪ µ2 (F1) , P (F1)) =
Ch ({w1, w4} , P (F1)) = {w4}. Therefore, the conclusion of Proposition 2
does not hold because λ 6= µ1∧Wµ2. Moreover, sincew1 /∈ Ch (µ1∧Wµ2 (F1) , P (F1))
we have that µ1∧Wµ2 is not individually rational for F1 and thus, it is not
stable. Finally, notice that the matching

µ1∨Wµ2 =
µ
F1 F2 F3 F4 F5
∅ {w1, w3} {w2} {w4, w6} {w5}

¶
is not stable since the pair (F1, w5) blocks it. Therefore, if firms’ preferences
are not q−separable, µ1∧Wµ2 and µ1∨Wµ2 may not be stable matchings.
Once we have established the stability of µ1∧Wµ2 and µ1∨Wµ2 it is im-

mediate to see that properties (1) to (6) of the definition of a lattice on S (P )
are satisfied using the unanimous partial order ºW . Therefore, we can state
the first consequence of Theorem 1 in the form of the following corollary.
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Corollary 3 Let P be a profile of substitutable and q−separable preferences.
Then, (S (P ) ,ºW ,∧,∨) is a lattice on S (P ), where ∧ = ∧W and ∨ = ∨W.
Following Blair (1988), define the partial ordering ºBF on S (P ) as follows:

given matchings µ1 and µ2,

µ1 ºBF µ2 ⇔ Ch (µ1 (F ) ∪ µ2 (F ) , P (F )) = µ1 (F ) for all F ∈ F .
Theorem 4.5 of Blair (1988) says that if firms have substitutable preferences,
then µ1 ºBF µ2 ⇔ µ2 ºW µ1 for all stable matchings µ1 and µ2. Therefore,
as a conclusion of Theorem 1 we can also state the following corollary, which
can be seen as the “conflict” counterpart of the previous natural lattice struc-
ture (S (P ) ,ºW ,∧W ,∨W) since it uses for the firms the opposite unanimous
ordering of the workers as the partial order on S (P ).

Corollary 4 Let P be a profile of substitutable and q−separable preferences.
Then,

¡
S (P ) ,ºBF ,∧,∨

¢
is a lattice on S (P ), where ∧ = ∨W and ∨ = ∧W.

4 The proof of Theorem 1

Lemma 5 (Theorem 7 in Roth (1985)) Let P be any substitutable profile of
preferences and let µ1 and µ2 be two stable matchings.

8 Then, the choice set
of the union of µ1 and µ2 is an stable matching.

Proof of Proposition 2 Is is sufficient to show that λ (F ) = µ1∧Wµ2 (F )
for all F ∈ F . First, we show that for all F ∈ F , λ (F ) ⊆ µ1∧Wµ2 (F ).
Suppose the contrary; namely, there exists F ∈ F and w ∈ λ (F ) such that

w /∈ µ1∧Wµ2 (F ) . (1)

Since w ∈ µ1(F ) ∪ µ2(F ) we may assume without loss of generality that
µ1(w) = F and µ2 (w) 6= F . Condition (1) implies F = µ1 (w)P (w)µ2 (w).
Then the pair (w,F ) blocks µ2 since w ∈ Ch (µ2 (F ) ∪ {w} , P (F )) because
P (F ) is substitutable and w ∈ λ (F ).
Second, we show that µ1∧Wµ2 (F ) ⊆ λ (F ) for all F ∈ F . Assume

otherwise; that is, there exist F ∈ F and

w ∈ µ1∧Wµ2 (F ) (2)

8Notice that we do not require here that the preference profile P be q−separable.
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such that w /∈ λ (F ). Substitutability and q−separability of P (F ), stability
of λ, and Remark 1 imply that [w /∈ λ (F ) =⇒ w /∈ µ1 (F ) ∩ µ2 (F )], because
if w ∈ µ1 (F )∩µ2 (F ) and w /∈ λ (F ) then w is unmatched in λ, which contra-
dicts Remark 1. Without loss of generality, assume that w ∈ µ2 (F ) \µ1 (F ).
Therefore, by condition (2), F 0 = µ1 (w)P (w)µ2 (w) = F for some F 0,
which implies by the substitutability and q−separability of P (F ), the stabil-
ity of λ, and Remark 1 that w ∈ λ (F 0) and w /∈ µ1∧Wµ2 (F 0) contradicting
λ (F 0) ⊆ µ1∧Wµ2 (F 0).
To prove that µ1∨Wµ2 is stable we need to establish a preliminary result

which is presented in the following Lemma.

Lemma 6 Let P be a profile of substitutable and q−separable preferences
and assume that µ1 and µ2 are two stable matchings. Then, for all F ∈ F:

|µ1∨Wµ2(F )| = |µ1(F )| = |µ2(F )| .

Proof. Assume that there exists F̃ ∈ F such that
¯̄̄
µ1(F̃ )

¯̄̄
<
¯̄̄
µ1∨Wµ2(F̃ )

¯̄̄
.

Then, we can find bw ∈ µ1∨Wµ2(F̃ )\µ1(F̃ ) such that the pair (bw, F̃ ) blocks µ1,
since bw ∈ µ2(F̃ ), F̃P (bw)µ1(bw), and ¯̄̄µ1(F̃ )¯̄̄ < ¯̄̄

µ1∨Wµ2(F̃ )
¯̄̄
≤ qF̃ . There-

fore,
|µ1∨Wµ2(F )| ≤ |µ1(F )| for all F ∈ F .

Assume that there exists bF ∈ F with the property that¯̄̄
µ1∨Wµ2( bF )¯̄̄ < ¯̄̄µ1( bF )¯̄̄ .

Then, X
F∈F

|µ1∨Wµ2(F )| <
X
F∈F

|µ1(F )|

which implies that there exists bw ∈ ∪F∈Fµ1(F )\ ∪F∈F µ1∨Wµ2(F ). By the
q−separability and substitutability of P and Remark 1, we have that there
exist two firms, bF and F̃ , such that bw ∈ µ1( bF ) and bw ∈ µ2(F̃ ). Then, by the
definition of ∨W , we have either bw ∈ µ1∨Wµ2( bF ) or bw ∈ µ1∨Wµ2(F̃ ) which
contradicts the fact that bw /∈ ∪F∈Fµ1∨Wµ2(F ).
Now, we are ready to establish the stability of µ1∨Wµ2.
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Lemma 7 Let P be a profile of substitutable and q−separable preferences
and assume that µ1 and µ2 are two stable matchings. Then, µ1∨Wµ2 is a
stable matching.

Proof. The individual rationality of matching ∨W for each worker is a direct
consequence of its definition. We will first show that ∨W is individually
rational for each firm F ∈ F ; namely, µ1∨Wµ2(F ) = Ch(µ1∨Wµ2(F ), P (F ))
for all F ∈ F . Since Ch (S, P (F )) denotes firm F ’s most-preferred subset
of S, we have that Ch(µ1∨Wµ2(F ), P (F )) ⊆ µ1∨Wµ2(F ) for all F ∈ F .
Assume there exists F̄ ∈ F such that Ch(µ1∨Wµ2(F̄ ), P (F̄ )) ( µ1∨Wµ2(F̄ ).
Then, we have that

¯̄
Ch(µ1∨Wµ2(F̄ ), P (F̄ ))

¯̄
<
¯̄
µ1∨Wµ2(F̄ )

¯̄ ≤ qF̄ (the last
inequality is implied by Lemma 6). Let

w̃ ∈ £µ1∨Wµ2(F̄ )¤ \ £Ch(µ1∨Wµ2(F̄ ), P (F̄ ))¤ .
Because w̃ ∈ µ1(F̄ ) or w̃ ∈ µ2(F̄ ), we have that w̃P (F̄ )∅ and by the
q−separability of P (F̄ ) that£

Ch(µ1∨Wµ2(F̄ ), P (F̄ )) ∪ {w̃}
¤
P (F̄ )Ch(µ1∨Wµ2(F̄ ), P (F̄ )) (3)

holds. But since w̃ ∈ µ1∨Wµ2(F̄ ) condition (3) means thatCh(µ1∨Wµ2(F̄ ), P (F̄ ))
is not firm F̄ ’s most-preferred subset of µ1∨Wµ2(F̄ ), which is a contradiction.
To finish with the proof that µ1∨Wµ2 is a stable matching, assume that

the pair (w̃, F̃ ) blocks µ1∨Wµ2; namely,

w̃ /∈ µ1∨Wµ2
³
F̃
´
,

w̃ ∈ Ch(µ1∨Wµ2(F̃ ) ∪ {w̃} , P (F̃ )), and

F̃P (w̃)µ1∨Wµ2(w̃). (4)

We distinguish between the following two cases:
Case 1:

¯̄̄
µ1∨Wµ2(F̃ )

¯̄̄
< qF̃ . Then, the pair (w̃, F̃ ) also blocks both µ1

and µ2, because by condition (4) we have that

F̃P (w̃)µ1∨Wµ2(w̃)R(w̃)µk(w̃)
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for k = 1, 2, which also implies that w̃ /∈ µk
³
F̃
´
. Since

¯̄̄
µk(F̃ )

¯̄̄
< qF̃ (by

Lemma 6), w̃P (F̃ )∅ and q−separability of P
³
F̃
´
we have that

w̃ ∈ Ch
³
µk

³
F̃
´
∪ w̃, P

³
F̃
´´
.

Case 2:
¯̄̄
µ1∨Wµ2(F̃ )

¯̄̄
= qF̃ . Then, there exists w1 ∈ µ1∨Wµ2(F̃ ) such

that
w1 /∈ Ch(µ1∨Wµ2(F̃ ) ∪ {w̃} , P (F̃ )). (5)

Without loss of generality, we assume that w1 ∈ µ2(F̃ ). We claim that the
following equality

Ch(
h
µ1∨Wµ2(F̃ ) ∪ {w̃}

i
∪ µ2(F̃ ), P (F̃ )) = µ2(F̃ ) (6)

holds. Assume that there existsw ∈
h
Ch(

h
µ1∨Wµ2(F̃ ) ∪ {w̃}

i
∪ µ2(F̃ ), P (F̃ ))

i
\
h
µ2(F̃ )

i
.

Then either w = w̃, in which case, by condition (4) and the substitutability

of P
³
F̃
´
, the pair

³
w̃, F̃

´
also blocks µ2, or else (w 6= w̃), implying that,

w ∈
h
Ch(

h
µ1∨Wµ2(F̃ )

i
∪ µ2(F̃ ), P (F̃ ))

i
\
h
µ2(F̃ )

i
, by the substitutability

of P
³
F̃
´
. Therefore, and again by the substitutability of P

³
F̃
´
, we have

that w ∈ Ch(µ2(F̃ ) ∪ {w} , P (F̃ )). But since w ∈ µ1∨Wµ2(F̃ )\µ2
³
F̃
´
we

have that F̃P (w)µ2(w) which implies that the pair
³
w, F̃

´
blocks µ2. There-

fore, condition (6) holds. Finally, and applying again the assumption that

P
³
F̃
´
is substitutable, we have that

w1 ∈ Ch(
h
µ1∨Wµ2(F̃ ) ∪ {w̃}

i
∪ w1, P (F̃ )),

which contradicts (5) since w1 ∈ µ1∨Wµ2(F̃ ).
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