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Abstract: We study individually rational rules to be used to allot, among a group

of agents, a perfectly divisible good that is freely available only in whole units.

A rule is individually rational (at a preference pro�le) if each agent �nds that

her allotment is at least as good as any whole unit of the good. We study and

characterize two individually rational and e¢ cient rules, whenever agents�prefer-

ences are symmetric single-peaked on the set of possible allotments. The two rules

are in addition envy-free, but they di¤er on wether envy-freeness is considered on

losses or on awards. Our main result states that (i) the constrained equal losses

rule is the unique individually rational and e¢ cient rule that satis�es justi�ed

envy-freeness on losses and (ii) the constrained equal awards rule is the unique

individually rational and e¢ cient rule that satis�es envy-freeness on awards.
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1 Introduction

Consider the allotment problem faced by a group of agents who may share an homoge-

neous and perfectly divisible good, available only in integer units. For instance, a bound

or a lottery ticket with (a potentially large) face value. Agents�risk attitudes and wealth

induce single-peaked preferences on their potential allotments, the set of non-negative

real numbers. A solution of the problem is a rule that selects, for each pro�le of agents�

preferences (a pro�le for short), an integer number of units of the good to be allotted

and a vector of allotments (one for each agent) whose sum is equal to this integer. But,

for most pro�les, the sum of agents�best allotments will be either larger or smaller than

any integer number and hence, an endogenous rationing problem emerges, positive or

negative depending on whether the chosen integer is smaller or larger to the sum of

agents�best allotments. Sprumont (1991) studied the problem when the amount of the

good to be allotted is �xed. He characterized the uniform rule as the unique e¢ cient,

strategy-proof and anonymous rule, on the domain of single-peaked preferences. The

present paper can be seeing as an extension of Sprumont (1991)�s paper to a setting

where the amount to be allotted of a perfectly divisible good has to be an integer, which

may depend on agents�preferences.

We are interested in situations where the good is freely available to agents, but only

in whole units. Hence, an agent will not accept a proposal of an allotment that is strictly

worse than any integer amount of the good. For an agent with a (continuous) single-

peaked preference, the set of allotments that are at least as good as any integer amount

of the good (the set of individually rational allotments) is a closed interval that contains

the best allotment, that we call the peak, and at least one of the two extremes of the

interval is an integer. If preferences are symmetric, the peak is in the middle of the

interval.

Our main concern then is to identify rules that select, for each pro�le of agents�

symmetric single-peaked preferences, a vector of individually rational allotments. We

call such rules individually rational. But since the set of individually rational rules is

extremely large, and some of them are arbitrary and non-interesting, we would like to

focus further on rules that are also e¢ cient, strategy-proof, and satisfy some minimal

fairness requirement. A rule is e¢ cient if it selects, at each pro�le, a Pareto optimal
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vector of allotments: no other choices of (i) integer unit of the good to be allotted or

(ii) vector of allotments, or (iii) both, can make all agents better o¤, and at least one

of them strictly better o¤. We characterize the class of all e¢ cient rules by means of

two properties. First, the allotted amount of the good is the closest integer to the sum

of agents�peaks. Second, all agents are rationed in the same direction: all receive more

than their peaks, if the integer to be allotted is larger than the sum of the peaks, or all

receive less, otherwise. A rule is strategy-proof if it induces, at each pro�le, truth-telling

as a weakly dominant strategy in its associated direct revelation game. Our fairness

requirement will be related to two alternative and well-known notions of envy-freeness,

that we will adapt to our setting (justi�ed envy-freeness from losses and envy-freeness

from awards).1

We �rst show that there is no rule that is simultaneously e¢ cient and strategy-proof.2

We then proceed by studying separately two subclasses of rules; those that are individ-

ually rational and e¢ cient and those that are individually rational and strategy-proof.

For the �rst subclass, we identify the constrained equal losses rule and the constrained

equal awards rule as the unique rules that, in addition of being individually rational and

e¢ cient, satisfy also either justi�ed envy-freeness on losses or envy-freeness on awards,

respectively. These rules divide the e¢ cient integer amount of the good in such a way

that all agents experience either equal losses or equal gains, subject to the constraint

that all allotments have to be individually rational. Speci�cally, the constrained equal

losses rule, evaluated at a pro�le, selects �rst the e¢ cient number of integer units. Then,

to allot this integer amount it proceeds with the rationing from the vector of peaks, by

either reducing or increasing the peak of each agent (depending on whether the sum of

the peaks is larger or smaller than the integer amount to be allotted) until the total

amount is allotted. However, it makes sure that the extremes of agents� individually

rational intervals are not overcome by excluding any agent from the rationing process as

soon as one of the extremes of the agent�s individually rational interval is reached, and

it continues with the rest. The constrained equal awards rule is de�ned similarly but

instead it uses, as the starting vector of the rationing process, either the vector of lower

bounds or the vector of upper bounds of the individually rational intervals, depending on

whether the sum of the peaks is larger or smaller than the integer amount to be allotted,

1See Thomson (2010) for a survey on envy-freeness.
2This is in contrast with Sprumont (1991)�s setting, which admits an extremely large class of e¢ cient

and strategy-proof rules. See Barberà, Jackson and Neme (1997) for a characterization of the set of

sequential allotment rules as the class of all e¢ cient, strategy-proof and replacement monotonic rules.

To our knowledge this is the largest subclass of e¢ cient and strategy-proof rules, on the domain of

single-peaked pro�les, characterized so far.
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but makes sure that no agent�s peak is overcome by excluding her from the rationing

process as soon as her peak is reached, and it continues with the rest.

For the subclass of individually rational and strategy-proof rules, we show in contrast

that although there are many rules satisfying the two properties simultaneously, they

are not very interesting; for instance, none of them is unanimous. A rule is unanimous

if, whenever the sum of the peaks is an integer, the rule selects this integer and it

allots it according to the agents�peaks. We show then that individually rationality and

strategy-proofness are indeed incompatible with unanimity.

At the end of the paper we extend some of our general and possibility results to

the case where agents�preference are not necessarily symmetric. We argue why relevant

strategy-proof rules in the classical division problem (i.e., the uniform rule and all se-

quential dictator rules) are not satisfactory in our setting. In particular, we show �rst

that the (extended) uniform rule is e¢ cient on the domain of all single-peaked preference

pro�les but it is neither strategy-proof nor individually rational, even in the domain of

symmetric single-peaked preference pro�les.3 Finally, we show that all sequential dicta-

tor rules are e¢ cient on the domain of all symmetric single-peaked preference pro�les

but they are neither individually rational nor strategy-proof, even in this subdomain.4

Before �nishing this Introduction we mention some of the most related papers to

ours. As we have already said, Sprumont (1991) proposed the division problem of a

�xed amount of a good among a group of agents with single-peaked preferences on

their potential allotments and provided two characterizations of the uniform rule, using

strategy-proofness, e¢ ciency and either anonymity or envy-freeness. Then, a very large

literature followed Sprumont (1991) by taking at least two di¤erent paths. The �rst

contains papers providing alternative characterizations of the uniform rule. See for in-

stance Ching (1994) Sönmez (1994) and Thomson (1994a, 1994b, 1995 and 1997), whose

characterizations we brie�y discuss in the last section of the paper. The second group

of papers proposed alternative rules when the problem is modi�ed by introducing addi-

3The extended uniform rule allots, at each pro�le, the e¢ cient integer amount as the uniform rule

would do it. It is not strategy-proof because an agent may have incentives to missreport his preferences

to induce a di¤erent choice of the integer amount, and it is not individually rational because the vector

of allotments selected by the uniform rule is not individually rational in general.
4A sequential dictator rule, given a pre-speci�ed order on the set of agents, proceeds by letting

agents choose sequentially their peaks, rationing only the last agent whose allotment is the remainder

amount that ensures that the sum of the allotments is equal to the e¢ cient integer amount. Sequential

dictator rules are not strategy-proof because the agent at the end of the ordering may have incentives

to missreport her preference to induce a di¤erent amount to allot. They are not individually rational

because the agent at the end of the ordering is rationed independently of his individually rational

interval.
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tional features or considering alternative domains of agents�preferences, or both. For

instance, Ching (1992) extended the characterization of Sprumont (using envy-freeness)

to the domain of single-plateaud preference pro�les and Bergantiños, Massó and Neme

(2012a, 2012b and 2015), Manjunath (2012) and Kim, Bergantiños and Chun (2015)

study alternative ways of introducing individual rationality in the division problem. But

in contrast with the present paper they assume that the quantity of the good to be

allotted is �xed. Amorós (2002) started the multi-dimensional analysis of the division

problem when several commodities have to be allotted among the same group of agents,

but again the quantities of the goods to be allotted are �xed.

The paper is organized as follows. The next section presents the problem, preliminary

notation and basic de�nitions. Section 3 contains the de�nitions of the properties of

the rules that we will be concerned with. Section 4 describes the rules and states a

preliminary result. Section 5 contains the main results of the paper for symmetric single-

peaked preferences. Section 6 contains two �nal remarks.

2 The problem

We study situations where each agent of a �nite set N = f1; : : : ; ng wants an amount
of a perfectly divisible good that can only be obtained in integer units and arbitrary

portions of each unit can be freely allotted. We assume that n � 2 and denote by xi � 0
the total amount of the good allotted to agent i 2 N: Since all units of the good are
alike, the amount xi may come from di¤erent units. We assume that there is no limit

on the (integer) number of units that can be allotted. Hence, and once N is �xed, the

set of feasible (vector of) allotments is

FA = fx = (x1; : : : ; xn) 2 RN+ j
P

i2N xi 2 Ng;

where R+ = [0;+1) is the set of non-negative real numbers and N = f1; 2; : : :g is the
set of integers.5

Each agent i has a preference relation �i de�ned on the set of potential allotments,
which is a complete and transitive binary relation on R+. That is, for all xi; yi; zi 2
R+; either xi �i yi or yi �i xi; and xi �i yi and yi �i zi imply xi �i zi; note that
re�exivity (xi �i xi for all xi 2 R+) is implied by completeness. Given �i, let �i be
the antisymmetric binary relation on R+ induced by �i (i.e., for all xi; yi 2 R+, xi �i yi
if and only if yi � xi does not hold) and let �i be the indi¤erence relation on R+

5Since no confusion can arise with negative integers, we refer to the set of non-negative integers N
as the set of integers.
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induced by �i (i.e., for all xi; yi 2 R+, xi �i yi if and only if xi �i yi and yi �i xi).
We assume that �i is continuous (i.e., for each xi 2 R+ the sets fyi 2 R+ j yi �i xig
and fyi 2 R+ j xi �i yig are closed) and that �i is single-peaked on R+; namely, there
exists a unique pi 2 R+, the peak of �i, such that pi �i xi for all xi 2 R+nfpig and
xi �i yi holds for any pair of allotments xi; yi 2 R+ such that either yi < xi � pi or

pi � xi < yi. We say that agent i�s single-peaked preference �i is symmetric on R+
if for all zi 2 [0; pi], (pi � zi) �i (pi + zi) ; that is, for all xi; yi 2 R+; xi �i yi if and
only if jpi � xij � jpi � yij : Notice two things. First, the peak of a symmetric single-
peaked preference conveys all information about the whole preference. Thus, we will

often identify a symmetric single-peaked preference �i with its peak pi. Second, for each
xi 2 R+ there exists an integer kxi 2 N such that kxi � xi < kxi+1: Hence, the following
notation is well-de�ned:

[xi]l = kxi

[xi]u = kxi + 1; and

[xi] =

(
kxi if xi � kxi + 0:5
kxi + 1 if xi > kxi + 0:5:

In particular, [xi] is the integer closest to xi (if it is unique) and [xi] = kxi if xi =
2kxi+1

2
:

A (division) problem is a pair (N;�) where N is the set of agents and �= (�1; : : : ;�)
is a pro�le of single-peaked preferences on R+, one for each agent in N . Since the set
N will remain �xed we often write � instead of (N;�) and refer to � as a problem and

as a pro�le, interchangeably. To emphasize agent i�s preference �i in the pro�le � we

often write it as (�i;��i):
We denote by P the set of all problems and by PS the set of all problems where

agents�preferences are symmetric single-peaked.

Since preferences are idiosyncratic, they have to be elicited. A rule on P is a function
f assigning to each problem �2 P a feasible allotment f (�) = (f1 (�) ; : : : ; fn(�)) 2
FA: We will also consider rules de�ned only on PS: Any rule on P can be restricted to
operate only on PS:
To study rules on PS selecting individually rational allotments, the following intervals

will play a critical role. Fix a problem �2 PS; with its vector of peaks (p1; : : : ; pn). For
each i 2 N; de�ne the associated interval

[li; ui] =

(
[[pi]l ; pi + (pi � [pi]l)] if [pi] = [pi]l
[pi � ([pi]u � pi) ; [pi]u] if [pi] = [pi]u :

Allotments outside the interval [li; ui] are strictly worse to some integer allotment, and

they will not be acceptable to i; if agents have free access to any integer amount of the
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good. Since each interval [li; ui] depends only on pi; we call it the individually rational

interval of pi (Proposition 2 will show the exact relationship between individually ratio-

nal rules on PS and these individually rational intervals). Given pi 2 R+; [li; ui] can be
seen as the unique interval with the properties that pi is equidistant to the two extremes

(i.e. pi = li+ui
2
), at least one of the two extremes is an integer, and its length is at most

one. For instance, the individually rational interval of pi = 1:8 is [1:6; 2] and of pi = 2:3

is [2; 2:6]:

3 Properties of rules

We now describe possible properties that a rule f on P (or on PS) may satisfy. Again,
the properties de�ned on P can be straightforwardly extended to PS by restricting their
de�nitions to the set of problems in PS:
We start with the property of individual rationality, the one that we found more

basic for the class of problems we are interested in, which is the main focus of this paper.

Since we are assuming that all integer units of the good are freely available, even for a

single agent, a rule is individually rational if each agent considers his allotment at least

as good as any integer number of units of the good.

Individual rationality. For all �2 P, i 2 N and k 2 N, fi (�) �i k:

The next two properties are also very appealing. E¢ ciency says that, for each prob-

lem, the allotments selected by the rule is Pareto undominated in the set of feasible

allotments, while a rule is strategy-proof if agents can never obtain a strictly better

allotment by misrepresenting their preferences.

E¢ ciency. For all �2 P, there does not exist y 2 FA such that yi �i fi(�) for all i 2 N
and yj � fj(�) for at least one j 2 N:

Strategy-proofness. For all �2 P ; i 2 N and single-peaked preference �0i,

fi (�) �i fi (�0i;��i) :

Agent i manipulates f at � via �0i if fi (�0i;��i) �i fi (�).

We will also consider other desirable properties of rules. Participation says that

agents will not have interest in obtaining integer units of the good in addition to their

received allotments. To de�ne it formally, we need some additional notation. For each

�2 P, i 2 N and k 2 N such that k � pi; let ��ki be the single-peaked preference on R+
obtained from �i by shifting it downwards in k units; namely, for each pair xi; yi 2 R+;
xi ��ki yi if and only if k + xi �i k + yi.
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Participation. For all �2 P, i 2 N and k 2 N such that k � pi;

fi(�) = k + fi(��ki ;��i):

Unanimity says that the rule selects the pro�le of peaks whenever it is a feasible vector

of allotments. Equal treatment of equals says that agents with the same preferences

receive equal allotments.

Unanimity. For all �2 P such that
P

j2N pj 2 N; fi (�) = pi for all i 2 N:

Equal treatment of equals. For all �2 P and i; j 2 N such that �i=�j; fi (�) = fj (�) :

Envy-freeness says that the rule selects a vector of allotments with the property that

no agent would strictly prefer the allotment of another agent.

Envy-freeness. For all �2 P and i; j 2 N , fi (�) �i fj (�) :

The next three properties are alternative versions of envy-freeness, once adapted to

our context when agents have symmetric single-peaked preferences and they have free

access to any integer amount of the good. The emphasis is on either the losses or

the awards that agents�allotments represent with respect to either their peaks or the

extremes of their individually rational intervals, respectively. First, envy-freeness on

losses says that each agent prefers his loss (with respect to his peak) to the loss of any

other agent.

Envy-freeness on losses. For all�2 PS and i; j 2 N , fi(�) �i max fpi + (fj (�)� pj); 0g :6

Second, justi�ed envy-freeness on losses quali�es the previous property by requiring

that each agent i prefers his loss (i.e., fi (�)� pi) to the loss of any other agent j (i.e.,
fj (�) � pj), only if j�s allotment is non-integer. Since agents can obtain freely any
integer number of units of the good, it may be understood that it is not legitimate to

express envy against another agent who is receiving an integer allotment because it is as

if the rule would not allot to this other agent any amount.

Justi�ed envy-freeness on losses. For all �2 PS and i; j 2 N such that fj(�) =2 N,
fi (�) �i max fpi + (fj (�)� pj); 0g :

Envy-freeness on awards roughly says that each agent prefers her award, with respect

to her individual rational allotment, to any amount between her award and the award

of any other agent. To state it formally, let f be a rule on PS. De�ne, for each �2 PS

6Note that fi (�) = pi + (fi (�)� pi) always holds; hence, the condition in the de�nition is trivially
satis�ed whenever i = j:
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and i 2 N , the award of i (at (�; f)) with respect to i�s individual rational interval as

ai (�; f) =
(
fi (�)� li if fi (�) � pi
ui � fi (�) if fi (�) > pi:

When no confusion arises we write ai instead of ai (�; f) :

Envy-freeness on awards. For all �2 PS and i; j 2 N ,

x 2 [min fai (�; f) ; aj (�; f)g ;max fai (�; f) ; aj (�; f)g]

implies fi (�) �i li + x.7

Example 1 might help to better understand this property.

Example 1 Consider the problem (N;�) 2 PS where N = f1; 2; 3g, p = (0:1; 0:6; 0:6)
and f(�) = (0; 0:5; 0:5): Then, l1 = 0, l2 = 0:2; a1 (�; f) = 0; and a2 (�; f) = 0:3 and

[min fa1 (�; f) ; a2 (�; f)g ;max fa1 (�; f) ; a2 (�; f)g] = [0; 0:3]:

By setting x = 0:3 we have that f1(�) = 0 �1 0:3 = l1 + x: Nevertheless, by setting

x = 0:1 we have that f1(�) = 0 �1 0:1 = l1+x and so, f would not satisfy envy-freeness
on awards. Notice that in this case agent 1 can argue that agent 3 is receiving (when

comparing with the individual rational point) more than him. �

Finally, group rationality is an extension of individual rationality to groups of agents.

It says that each subset of agents receives a total allotment that is �at least as good�(in

aggregate terms) as any other total allotment they could receive only by themselves.

Group rationality. For all �2 PS, S � N and k 2 N,��P
i2S pi �

P
i2S fi (�)

�� � ��Pi2S pi � k
�� :

Remark 1 The following statements hold.8

(R1.1) If f is e¢ cient on P, then f is unanimous.
(R1.2) If f is envy-free on losses on PS, then f satis�es justi�ed envy-freeness on losses
on PS.
(R1.3) If f is group rational on PS, then f is individually rational on PS.
(R1.4) Envy-freeness and envy-freeness on losses are unrelated.

7Since �i is symmetric single-peaked, for all such x; fi (�) �i li+x is equivalent to fi (�) �i ui�x:
8The proof that (R1.1), (R1.2) and (R1.3) hold is inmediate. Example 2 indicates the main reasons

why (R1.4) and (R1.5) hold as well.
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(R1.5) Envy-freeness and envy-freeness on awards are unrelated.

Example 2 Consider the problem (N;�) 2 PS where N = f1; 2g and p = (1:4; 3:4) :
Any rule that selects the feasible vector of allotments (1:6; 3:4) at � may satisfy envy-

freeness but it would fail to satisfy envy-freeness on losses and envy-freeness on awards.

Consider now the pro�le�02 PS where p0 = (0:35; 0:45) :Any rule that selects the feasible
vector of allotments (0:45; 0:55) at �0 may satisfy envy-freeness on losses but it would fail
to satisfy envy-freeness. Finally, consider the pro�le �002 PS where p00 = (0:6; 0:8) : Any
rule that selects the feasible vector of allotments (0:3; 0:7) at�00 may satisfy envy-freeness
on awards but it would fail to satisfy envy-freeness. �

4 Rules

In this section we adapt, to our setting with integer amounts, fair and well-known rules

that have already been used to solve the division problem with a �xed amount. Since our

main results will be relative to symmetric single-peaked preferences, we already restrict

the rules we consider in the next two sections to operate on PS. This is important
because the rules will allot the integer amount that is closest to the sum of the peaks,

which is always the e¢ cient amount only if single-peaked preferences are symmetric.

Although we will be interested only on their constrained versions (to unsure that they are

individually rational) we also present their unconstrained versions for further reference

and because they may help the reader to understand the constrained ones. The �rst one

is the equal losses rule fEL. At any pro�le, fEL selects the feasible vector of allotments

by the following egalitarian procedure. Start from the vector of peaks and, if this is an

unfeasible vector of allotments, increase (or decrease) all agents�allotments in the same

amount until the integer [
P

j2N pj] is allotted, stopping the decrease (if this is the case)

of any agent�s allotment, as soon as the zero allotment is reached.

Equal losses
�
fEL

�
. For all �2 PS and i 2 N; set

fELi (�) =
(
pi �min f�; pig if

P
j2N pj � [

P
j2N pj]

pi + � if
P

j2N pj < [
P

j2N pj];

where � is the unique real number for which
P

j2N f
EL
j (�) = [

P
j2N pj] holds.

9

Figure 1 represents fEL at the pro�les �; �0 and ��; where p1 + p2 = p01 + p
0
2 >

[p1 + p2] = [p
0
1 + p

0
2] and �p1 + �p2 < [�p1 + �p2]:

9Corollary 1 below (that follows from Proposition 1) will establish the existence of such unique real

number �, as well as the existence of the real numbers b�, �, and b�, used to de�ne the other three rules
below.
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Figure 1

The constrained equal losses rule fCEL proceeds by following the same egalitarian

procedure but now the increase or decrease of the allotment of agent i; starting from pi;

stops as soon as i�s allotment is equal to the relevant extreme of i�s individually rational

interval.

Constrained equal losses (fCEL). For all �2 PS and i 2 N; set

fCELi (�) =
(
pi �min fb�; pi � lig if

P
j2N pj � [

P
j2N pj]

pi +min fb�; ui � pig if
P

j2N pj < [
P

j2N pj];

where b� is the unique real number for whichPj2N f
CEL
j (�) = [

P
j2N pj] holds.

Figure 2 represents fCEL at the pro�les � and ��; where p1 + p2 > [p1 + p2] and

�p1 + �p2 < [�p1 + �p2]:

The equal awards rule fEA follows the same egalitarian procedure used to de�ne fEL;

but instead of starting from the vector of peaks, it starts from the vector of relevant

extremes of the individual rational intervals and, it increases (or decreases) all agents�

allotments in the same amount until the integer number of units [
P

j2N pj] is allotted,

making sure that no agent receives a negative allotment.
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x2

x1
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l2 q
q
l1l1

qqu2

q
u1

fCEL(�)

fCEL( ��)

?

Figure 2

Equal awards
�
fEA

�
. For all �2 PS and i 2 N; set

fEAi (�) =
(
li + � if

P
j2N pj � [

P
j2N pj]

ui �minf�; uig if
P

j2N pj < [
P

j2N pj];

where � is the unique real number for which
P

j2N f
EA
j (�) = [

P
j2N pj] holds.

Figure 3 represents fEA at the pro�les �; �0 and ��; where p1 + p2 > [p1 + p2],

p01 + p
0
2 < [p

0
1 + p

0
2], �p1 + �p2 < [�p1 + �p2] and [p

0
1 + p

0
2] = [�p1 + �p2]:

The constrained equal awards rule fCEA proceeds by following the same egalitarian

procedure used to describe fEA; but now the increase or decrease of the allotment of

each agent i; starting from the relevant extreme of i�s individually rational interval, stops

as soon as i�s allotment is equal to pi.

Constrained equal awards fCEA. For all �2 PS and i 2 N; set

fCEAi (�) =
(
li +minfb�; pi � lig if

P
j2N pj � [

P
j2N pj]

ui �minfb�; ui � pig if
P

j2N pj < [
P

j2N pj];

where b� is the unique real number for whichPj2N f
CEA
j (�) = [

P
j2N pj] holds.
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Figure 4 represents fCEA at the pro�les � and ��; where p1 + p2 > [p1 + p2] and

�p1 + �p2 < [�p1 + �p2]:
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Figure 4

The existence of the unique numbers �, b�, � and b� in each of the above de�nitions
is guaranteed by Proposition 1 below. The translation of its content at the �gures

13



representing the four rules is as follows. Conditions (P1.1) and (P1.2) guarantee that

the vector of lower bounds l = (l1; : : : ; ln) and the vector of upper bounds u = (u1; : : : ; un)

lie below and above the hyperplane fy 2 RN+ j
P

j2N yj = [
P

j2N pj]g; respectively.10

Proposition 1 For each �2 PS, the relevant statement below holds.
(P1.1) If

P
j2N pj � [

P
j2N pj] then

P
j2N lj � [

P
j2N pj]:

(P1.2) If
P

j2N pj < [
P

j2N pj] then
P

j2N uj � [
P

j2N pj]:

Proof Let �2 PS be arbitrary.
(P1.1) To obtain a contradiction supposeP

j2N lj > [
P

j2N pj]: (1)

For all i 2 N; li � pi: Then, there exists at least one i such that li < pi; otherwise, if

for all j 2 N; lj = pj holds, then pj 2 N for all j 2 N; and (1) could not hold. Hence,
by the de�nition of [

P
j2N pj]; and since li � pi for all i 2 N and

P
j2N pj � [

P
j2N pj];

there exists k 2 N such that

k = [
P

j2N pj] <
P

j2N lj <
P

j2N pj � k + 0:5: (2)

For each i 2 N there exists ki 2 N such that ki � li � pi < ki + 1: To see that note that
given pi 2 [li; ui] either li 2 N or ui 2 N (or both, if pi = li+ui

2
) and so, if li 2 N then

li = ki and if ui 2 N then ui = ki + 1: Consider the symmetric single-peaked preference
�kii , de�ned as in the preference used in the de�nition of the participation property.
Let l0i and p

0
i be the corresponding lower bound and peak associated with �kii : Thus,

l0i = li � ki and p0i = pi � ki: Note that 0 � p0i < 1: It is easy to see that the three

equalities below hold.

[
P

j2N pj] =
P

j2N kj + [
P

j2N p
0
j];P

j2N lj =
P

j2N kj +
P

j2N l
0
j; andP

j2N pj =
P

j2N kj +
P

j2N p
0
j:

Let k0 = k �
P

j2N kj: Then, by (2) and the equalities above,

k0 = [
P

j2N p
0
j] <

P
j2N l

0
j <

P
j2N p

0
j � k0 + 0:5:

Hence, without loss of generality, we can assume that 0 � pi < 1 for all i 2 N: Let
S = fi 2 N j li = 0g. Observe that if i =2 S, li < pi and ui = 1: Thus,

k = [
P

j2N pj] <
P

j2N lj =
P

j2NnS lj <
P

j2NnS pj �
P

j2N pj � k + 0:5:
10It is immediate to see that (i) if

P
j2N pj � [

P
j2N pj ] then

P
j2N uj � [

P
j2N pj ] and (ii) ifP

j2N pj < [
P

j2N pj ] then
P

j2N lj < [
P

j2N pj ]:

14



Hence, [
P

j2NnS pj] = k; and so we can also assume that li > 0 for all i 2 N: Since
0 < pi < 1; li < pi, and ui = 1; we have that

P
j2N pj < n: Then, k � n � 1. Besides,P

j2N uj = n: By (2),
P

j2N (pj � lj) < 0:5: Since, by symmetry, pi � li = ui � pi for
all i 2 N;

P
j2N (uj � pj) =

P
j2N (pj � lj) < 0:5: But since, by (2),

P
j2N pj � k + 0:5

holds,

n =
P

j2N uj =
P

j2N pj +
P

j2N (uj � pj) < k + 1 � n

holds as well, which is a contradiction.

(P1.2) The proof is analogous to the one used to prove part (P1.1), and hence we

omit it. �

Proposition 1 implies that the real numbers �; b�; � and b� used to de�ne the four
rules do exist, and hence the rules are well-de�ned. To see that, observe that fEL and

fCEL start allotting the good from p in a continuous and egalitarian (or constrained

egalitarian) way until the full amount [
P

j2N pj] is allotted. On the other hand, f
EA and

fCEA start allotting the good from the vector of relevant extremes of the individually

rational intervals in a continuous and egalitarian (or constrained egalitarian) way until

the full amount [
P

j2N pj] is allotted. Proposition 1 guarantees that the direction of the

allotment process goes in the right direction to reach [
P

j2N pj], from either one of the

two starting vectors. So, Corollary 1 holds.

Corollary 1 The real numbers �; b�; � and b�, used to de�ne fEL; fCEL; fEA and
fCEA respectively, do exist and they are unique.

5 Results for symmetric single-peaked preferences

5.1 Individual rationality, e¢ ciency and basic impossibilities

In the next proposition we present some results related with the properties of rules, when-

ever they operate on problems where agents�preferences are symmetric single-peaked.

The �rst result characterizes individually rational rules by stating that a rule is individ-

ually rational if and only if, for all pro�les, the rule selects a vector of allotments that

lie on the individually rational intervals of their peaks. The second result characterizes

e¢ cient rules by means of two conditions. Firstly, at each pro�le the rule allots the

integer amount that is closer to the sum of all peaks and secondly, all agents receive

more (or less) than their peaks whenever the sum of all peaks is smaller (or larger) than

the closest integer to the sum of peaks. We also show that some basic incompatibili-

ties among properties of rules hold, even when agents�preferences are restricted to be

symmetric single-peaked.
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Proposition 2 The following statements hold.

(P2.1) A rule f on PS is individually rational if and only if, for all �2 PS and i 2 N;
fi (�) 2 [li; ui] :
(P2.2) A rule f on PS is e¢ cient if and only if, for all �2 PS; two conditions hold:
(E2.1)

P
j2N fj (�) =

hP
j2N pj

i
:

(E2.2) For all i 2 N; fi (�) � pi when
P

j2N pj �
hP

j2N pj

i
and fi (�) � pi whenP

j2N pj <
hP

j2N pj

i
:

(P2.3) There is no rule on PS satisfying e¢ ciency and strategy-proofness.
(P2.4) There is no rule on PS satisfying group rationality and e¢ ciency.
(P2.5) There is no rule on PS satisfying individual rationality and envy freeness on
losses.

(P2.6) There is no rule on PS satisfying individual rationality, e¢ ciency, and envy
freeness.

Proof

(P2.1) It is obvious.

(P2.2) Let f be an e¢ cient rule on PS. We prove that f satis�es (E2.1). Suppose
not; i.e., there exists �2 PS such that

P
j2N fj (�) 6= [

P
j2N pj]: We proceed with the

proof assuming that
P

j2N fj (�) < [
P

j2N pj] (the proof of the other case is analogous,

and hence we omit it). Then, and since
P

j2N fj (�) 2 N, there exists at least one j0 2 N
such that

fj0(�) < pj0 : (3)

Moreover, we can assume that fi(�) � pi for all i 2 N: To see that, suppose fi0(�) > pi0
for some i0. Then, there would exist " > 0 such that pi0 < yi0 = fi0(�) � " < fi0(�)
and fj0(�) < yj0 = fj0(�) + " < pj0 : Set yi = fi(�), for all i 6= i0; j0: Hence,

P
j2N yj =P

j2N fj (�) 2 N: Thus, y 2 FA and yi0 �i0 fi0(�); yj0 �j0 fj0(�) and yi �i fi(�) for
all i 6= i0; j0; which would imply that f is not e¢ cient. By (3),

P
j2N fj (�) <

P
j2N pj:

If
P

j2N fj (�) < [
P

j2N pj] �
P

j2N pj; then there would exist y 2 FA such thatP
j2N yj = [

P
j2N pj], yi 2 [fi(�); pi] for all i; and yj0 2 (fj0(�); pj0 ] for at least one

j0; contradicting e¢ ciency of f: Thus, we can assume that
P

j2N fj (�) <
P

j2N pj <

[
P

j2N pj]: De�ne z =
P

j2N pj �
P

j2N fj (�) > 0: By de�nition of [
P

j2N pj], and sinceP
j2N fj (�) 2 N;

P
j2N pj < [

P
j2N pj] <

P
j2N pj + z: De�ne y = (y1; : : : ; yn) 2 RN+

such that
P

j2N yj 2 N and, for all i 2 N; yi 2 [pi; 2pi�fi(�)] and yj0 2 (pj0 ; 2pj0�fj0(�))
for at least one j0 2 N: To see that there exists such y with the property that

P
j2N yj =
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[
P

j2N pj] 2 N, observe thatP
j2N pj <

P
j2N yj <

P
j2N 2pj �

P
j2N fj(�) =

P
j2N pj + z:

Since preferences are symmetric single-peaked, for all i 2 N; yi �i fi(�) and there exists
j0 such that yj0 �j0 fj0(�): Hence, f is not e¢ cient. This proves that (E2.1) holds.
We now prove that f satis�es (E2.2). We only consider the case

P
j2N pj � [

P
j2N pj]

(the proof of the other case is analogous, and hence we omit it). Suppose not. Then,

there exists i 2 N such that fi (�) > pi: Since, by hypothesis and (E2.1),
P

j2N pj �
[
P

j2N pj] =
P

j2N fj(�), there exists j0 2 N such that fj0 (�) < pj0 : Let " be such

that 0 < " < minffi (�) � pi; pj0 � fj0 (�)g: Then, the feasible vector of allotments
(fi (�)�"; fj0 (�)+"; (fj (�))j2Nnfi;j0g) Pareto dominates f (�) : Hence, f is not e¢ cient.
This proves that (E2.2) holds.

We now prove the reciprocal. Let f be a rule satisfying (E2.1) and (E2.2). We only

consider the case
P

j2N pj � [
P

j2N pj] (the proof of the other case is analogous, and

hence we omit it). By (E2.2), fi(�) � pi for all i 2 N: Suppose f is not e¢ cient.

Then, there exists y = (y1; :::; yn) 2 FA that Pareto dominates f (�) : Since preferences
are symmetric single-peaked, for all i 2 N; yi 2 [fi (�) ; pi + (pi � fi (�))] and yj0 2
(fj0 (�) ; pj0 + (pj0 � fj0 (�))) for some j0 2 N: By (E2.1), the de�nition of the integer
[
P

j2N pj], the fact that
P

j2N(pj � fj(�)) � 0:5 and our assumption,P
j2N fj (�) = [

P
j2N pj] �

P
j2N pj � [

P
j2N pj] + 0:5

holds. Thus, P
j2N fj (�) <

P
j2N yj

<
P

j2N (pj + (pj � fj (�)))
=

P
j2N pj +

P
j2N (pj � fj (�))

�
P

j2N pj + 0:5

� [
P

j2N pj] + 1:

In particular,
P

j2N yj < [
P

j2N pj] + 1: Since, by (E2.1),
P

j2N fj (�) = [
P

j2N pj] andP
j2N yj 2 N; we deduce that

P
j2N yj = [

P
j2N pj] + 1, a contradiction.

(P2.3) Assume f is e¢ cient and strategy-proof on PS. We evaluate f at �ve problems
(N;�t) 2 PS where N = f1; 2g and t = 1; 2; 3; 4; and 5.
Consider the pro�le �1 where p1 = (0:26; 0:26) : By (P2.2) in Proposition 2, f1 (�1)+

f2 (�1) = 1 and fi (�1) � 0:26 for all i 2 N: Let �2 be such that p2 = (0:26; 0) : By

(P2.2) in Proposition 2, f1 (�2)+f2 (�2) = 0: Thus, f (�2) = (0; 0) : Let �3 be such that
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p3 = (0; 0:26) : Similarly, f (�3) = (0; 0). By strategy-proofness, f1 (�1) �11 f1 (�3) = 0:
Since preferences are symmetric, f1 (�1) � 0:52: Similarly, f2 (�1) � 0:52: Thus, 0:48 �
fi (�1) � 0:52 for all i 2 N:
Consider the pro�le �4 where p4 = (0:26; 0:3) : Similarly to �1; we can prove that

0:4 � f1 (�4) � 0:52 and 0:48 � f2 (�4) � 0:6: We now obtain a contradiction in each
of the three possible cases below.

1. f2 (�1) > f2 (�4) : Since f2 (�4) � 0:48 > 0:26 = p12 and preferences are symmetric
single-peaked, f2 (�4) �12 f2 (�1) ; which contradicts strategy-proofness because
agent 2 manipulates f at pro�le �1 via �42 with p42 = 0:3:

2. f2 (�1) < f2 (�4) : Since f2 (�1) � 0:48 > 0:3 = p42 and preferences are symmetric
single-peaked, f2 (�1) �42 f2 (�4) ; which contradicts strategy-proofness because
agent 2 manipulates f at pro�le �4 via �12 with p12 = 0:26:

3. f2 (�1) = f2 (�4) : Thus, f1 (�1) = f1 (�4) and 0:48 � fi (�4) � 0:52 for all

i 2 N: Consider the pro�le �5 where p5 = (0:21; 0:3) : Similarly to the pro�le

�1 we can show that 0:4 � f1 (�5) � 0:42 and 0:58 � f2 (�5) � 0:6: Since

f1 (�4) = 0:48 > 0:42 � f1 (�5) > 0:26 = p41 and preferences are symmetric single-
peaked, f1 (�5) �41 f1 (�4) ; which contradicts strategy-proofness because agent 1
manipulates f at pro�le �4 via �51 with p51 = 0:21:

(P2.4) Assume f satis�es group rationality and e¢ ciency on PS. Consider the prob-
lem (N;�) 2 PS where N = f1; 2; 3g and p = (0:8; 0:4; 0:4) : By e¢ ciency

P
i2N fi (�) =

2 and fi (�) � pi for all i 2 N: To apply the property of group rationality, consider the
following table indicating, for each subset of agents with cardinality two, the aggregate

loss, assuming the best integer amount is allotted (i.e., for each S � N with jSj = 2;

min
k2N

���Pj2S pj � k
���).

S min
k2N

���Pj2S pj � k
���

f1; 2g 0.2

f1; 3g 0.2

f2; 3g 0.2

Observe that 0:4 =
���Pj2N pj �

P
j2N fj (�)

��� = Pj2N (fj (�)� pj) : Suppose �rst that
fi (�) � pi = x for all i 2 N: Then, x = 0:4

3
and for any S ( N with two agents,���Pj2S pj �

P
j2S fj (�)

��� = 0:8
3
> 0:2 = min

x2N

���Pj2S pj � x
��� : Hence, f does not satisfy

group rationality. Suppose now that there exists i 2 N such that (fi (�)� pi) < 0:4
3
:
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Then, by setting S = Nnfig;
���Pj2S pj �

P
j2S fj (�)

��� > 0:8
3
> 0:2 = min

k2N

���Pj2S pj � k
��� ;

again a contradiction with group rationality of f:

(P2.5) Assume f satis�es individual rationality and envy freeness on losses on PS.
Consider the problem (N;�) 2 PS where N = f1; 2g and p = (1; 0:7) : By individual

rationality, f1 (�) = 1: Thus, f2 (�) 2 f0; 1; 2; : : :g which means that agent 2 envies the
zero loss (f1 (�)� p1 = 0) of agent 1.
(P2.6) Assume f satis�es individual rationality, e¢ ciency, and envy-freeness on PS.

Consider the problem (N;�) 2 PS where N = f1; 2g and p = (0:2; 0:35) : By individual
rationality, 0 � f1 (�) � 0:4 and 0 � f2 (�) � 0:7: By e¢ ciency and (P2.2) in Propo-

sition 2, f1 (�) + f2 (�) = 1: Thus, 0:3 � f1 (�) � 0:4 and 0:6 � f2 (�) � 0:7: Then,

f1 (�) �2 f2 (�) ; which contradicts envy-freeness. �

Our main objective in this paper is to identify individually rational rules to be used

to solve the division problem when the integer number of units is endogenous and agents�

preferences are symmetric single-peaked. Part (P2.1) in Proposition 2 characterizes the

class of all individually rational rules. Since this class is large, it is natural to ask whether

individual rationality is compatible with other additional properties. E¢ ciency and

strategy-proofness emerge as two of the most basic and desirable properties. However,

(P2.3) in Proposition 2 says that no rule satis�es the two properties simultaneously.

In the next two subsections we study rules that are individually rational and e¢ cient

(Subsection 5.2) and rules that are individually rational and strategy-proof (Subsection

5.3). For the �rst case, we identify the constrained equal losses rule and the constrained

equal awards rule as the unique ones that in addition of being individually rational and

e¢ cient satisfy also either justi�ed envy-freeness on losses or envy-freeness on awards,

respectively (Theorem 1). In contrast, in Subsection 5.3 we �rst show that although

there are individually rational and strategy-proof rules, they are not very interesting

(since they are not unanimous, for instance). Then, we show in Proposition 4 that

individually rationality and strategy-proofness are indeed incompatible with unanimity.

5.2 Individual rationality and e¢ ciency

Let �2 PS be a problem. Denote by IRE (�) the set of feasible vector of allotments
satisfying individual rationality and e¢ ciency. By (P2.1) and (P2.2) in Proposition 2,

this set can be written as

IRE (�) = fx 2 RN+ j
P

j2N xj = [
P

j2N pj] and, for all i 2 N ,
li � xi � pi when

P
j2N pj � [

P
j2N pj] and

pi � xi � ui when
P

j2N pj < [
P

j2N pj]g:
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By Proposition 1, the set IRE(�) is always non-empty. Hence, a rule f satis�es indi-
vidual rationality and e¢ ciency if and only if, for each �2 PS; f (�) 2 IRE (�) :
However, individual rationality and e¢ ciency are properties of rules that apply only

to each problem separately. They do not impose conditions on how the rule should

behave across problems. Thus, and given two di¤erent criteria compatible with indi-

vidual rationality and e¢ ciency, a rule can choose, in an arbitrary way, at problem �
an allocation in IRE(�), following one criterion, while choosing at problem �0 an al-
location in IRE(�0), following the other criterion. For instance the rule f that selects
fCEL (�) when [

P
j2N pj] is odd and f

CEA (�) when [
P

j2N pj] is even satis�es indi-

vidual rationality and e¢ ciency.11 Thus, it seems appropriate to require that the rule

satis�es an additional property in order to eliminate this kind of arbitrariness. We will

focus on two alternative properties related to envy-freeness: justi�ed envy-freeness on

losses and envy-freeness on awards. But then, the consequence of requiring that rules

(in addition of being individually rational and e¢ cient) satisfy either one of these two

forms of non-envyness are that only two rules are left, either the constrained equal losses

or the constrained equal awards, respectively. But before stating in Theorem 1 below

the characterizations of the two rules, we provide in Proposition 3 preliminary results

on the two rules, that will be useful in the sequel.

Proposition 3

(P3.1) The constrained equal losses rule on PS satis�es individual rationality, e¢ ciency,
justi�ed envy-freeness on losses, participation, unanimity and equal treatment of equals.

(P3.2) The constrained equal losses rule on PS does not satisfy strategy-proofness, group
rationality, envy-freeness, envy-freeness on losses, and envy-freeness on awards.

(P3.3) The constrained equal awards rule on PS satis�es individual rationality, e¢ ciency,
envy-freeness on awards, participation, unanimity and equal treatment of equals.

(P3.4) The constrained equal awards rule on PS does not satisfy strategy-proofness, group
rationality, envy-freeness, envy-freeness on losses, and justi�ed envy-freeness on losses.

Proof

(P3.1) That fCEL satis�es unanimity and equal treatment of equals follow directly

from its de�nition. Now, we show that fCEL satis�es the other properties.

Individual rationality. By its de�nition, for all �2 PS and i 2 N , fCELi (�) 2 [li; ui] :
By (P2.1) in Proposition 2, fCEL is individually rational.

E¢ ciency. By its de�nition, fCEL satis�es conditions (E2.1) and (E2.2) in Proposi-

tion 2. Hence, by (P2.2), fCEL is e¢ cient.

11Proposition 3 below will guarantee that for all �2 PS , fCEL (�) ; fCEA (�) 2 IRE (�).
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Justi�ed envy-freeness on losses. Suppose that
P

ji2N pj � [
P

j2N pj] (the proof of

the other case is analogous, and hence we omit it). Let j 2 N be such that fCELj (�) =2 N.
By individual rationality and single-peakedness,

fCELj (�) �j k for all k 2 N: (4)

We want to show that for all i 2 N; fCELi (�) �i maxfpi + (fCELj (�) � pj); 0g: By
de�nition, fCELj (�) = pj � minfb�; pj � ljg: If pj � lj � b�, then fCELj (�) = lj; which

contradicts (4) because fCELj (�) �j lj � uj and either lj or uj is an integer. Hence,

fCELj (�) = pj � b�: (5)

Let i 2 N be arbitrary. We distinguish between two cases. First, b� � pi � li. Then, by
(5), fCELi (�) = pi � b� = pi + (fCELj (�)� pj); which means that fCELi (�) = maxfpi +
(fCELj (�)�pj); 0g: Hence, fCELi (�) �i maxfpi+(fCELj (�)�pj); 0g: Second, b� > pi�li.
Then, by de�nition, fCELi (�) = li: Since, by (5), pi+(fCELj (�)�pj) = pi� b� < li � pi,
single-peakedness implies that fCELi (�) �i maxfpi + (fCELj (�)� pj); 0g:
Participation. Let �2 PS be such that k � pi for some i 2 N and k 2 N. We

want to show that fCELi (�) = k + fCELi

�
��ki ;��i

�
: Set �0= (��ki ;��i) and p0 =

(pi � k; (pj)j2Nnfig): Suppose that
P

j2N pj � [
P

j2N pj] (the proof of the other case

is analogous, and hence we omit it). Then, fCELi (�) = pi � min fb�; pi � lig where b�
satis�es

P
j2N f

CEL
j (�) = [

P
j2N pj]: Since p

0
i = pi � k and k is an integer, [

P
j2N p

0
j] =

[
P

j2N pj]�k. Hence,
P

j2N p
0
j � [

P
j2N p

0
j]: Now, f

CEL
i (�0) = p0i�minfb�0; p0i�l0ig whereb�0 satis�esPj2N f

CEL
j (�0) = [

P
j2N p

0
j]: Since l

0
i = li � k and l0j = lj for all j 2 Nn fig ;

we deduce that b�0 = b�: Then,
fCELi (�0) = pi � k �min fb�; pi � k � (li � k)g

= pi �min fb�; pi � lig � k
= fCELi (�)� k;

which is what we wanted to show.

(P3.2) We show that fCEL does not satisfy the following properties on PS.
Strategy-proofness. Consider the problems (N;�) and (N;�0) where N = f1; 2g, p =

(0:4; 0:8) and p0 = (0:4; 0:9) : Then, fCEL (�) = (0:3; 0:7) and fCEL (�0) = (0:25; 0:75) :
Since 0:75 �2 0:7, fCEL does not satisfy strategy-proofness because agent 2 manipulates
fCEL at pro�le � via �02 :
Group rationality. It follows from (P3.1) and (P2.4).
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Envy-freeness. Consider the problem (N;�) where N = f1; 2g and p = (0:40; 0:46) :
Then, fCEL (�) = (0:47; 0:53) ; which contradicts envy-freeness because agent 2 strictly
prefers 0:47 to 0:53:

Envy-freeness on losses. If follows from (P3.1) and (P2.6).

Envy-freeness on awards. Consider the problem (N;�) where N = f1; 2g and p =
(0:4; 0:46) : Then, fCEL (�) = (0:47; 0:53) : Therefore, a1(�; fCEL) = 0:8 � 0:47 = 0:33
and a2(�; fCEL) = 0:92 � 0:53 = 0:39: For 0:38 2 [0:33; 0:39]; we have that fCEL1 (�) =
0:47 �1 0:38. Thus, fCEL does not satisfy envy-freeness on awards.
(P3.3) That fCEA satis�es unanimity and equal treatment of equals follow directly

from its de�nition. Now, we show that fCEA satis�es the other properties.

Individual rationality. By its de�nition, for all �2 PS and i 2 N , fCEAi (�) 2 [li; ui] :
By (P2.1) in Proposition 2, fCEL is individually rational.

E¢ ciency. By its de�nition, fCEA satis�es conditions (E2.1) and (E2.2) in Proposi-

tion 2. Hence, by (P2.2), fCEA is e¢ cient.

Envy-freeness on awards. Suppose that
P

j2N pj � [
P

j2N pj] (the proof of the other

case is analogous, and hence we omit it). Since fCEA is e¢ cient, by (E2.2) in (P2.2) of

Proposition 2, fCEAi (�) � pi for all i 2 N: Suppose that fCEA does not satisfy envy-
freeness on awards. Then, there exist i; j 2 N and x 2 [min fai; ajg ;max fai; ajg] such
that

li + x �i fCEAi (�) : (6)

Since fCEAi (�) � pi; the allotment fCEAi (�) is not the peak of �i and so fCEAi (�) < pi:
Moreover, since by de�nition fCEAi (�) = li +minfb�; pi � lig; b� < pi � li and

fCEAi (�) = li + b� (7)

hold. Thus, ai = b�: We distinguish between two cases. First, minfb�; pj � ljg = b�: Since
aj = f

CEA
j (�)� lj = b�; it must be the case that x = b�. Hence, by (6),

li + b� = li + x �i fCEAi (�) = li + b�;
which is a contradiction. Second, minfb�; pj � ljg = pj � lj < b�: By the de�nition of
fCEA; fCEAj (�) = pj and aj = fCEAj (�)� lj = pj � lj: Thus, x 2 [pj � lj; b�] and

li + x � li + b� = fCEAi (�) � pi;

where the equality follows from (7). By single-peakedness, fCEAi (�) �i li + x; a contra-
diction with (6).

22



Participation. Let �2 PS be such that k � pi for some i 2 N and k 2 N. We
want to show that fCEAi (�) = k + fCEAi

�
��ki ;��i

�
: Set �0= (��ki ;��i) and p0 =

(pi � k; (pj)j2Nnfig): Suppose that
P

j2N pj � [
P

j2N pj] (the proof of the other case

is analogous, and hence we omit it). Then, fCEAi (�) = li + minfb�; pi � lig where b�
satis�es

P
j2N f

CEA
j (�) = [

P
j2N pj]: Since p

0
i = pi � k and k is an integer, [

P
j2N p

0
j] =

[
P

j2N pj]�k. Hence,
P

j2N p
0
j � [

P
j2N p

0
j]: Now, f

CEA
i (�0) = l0i+minfb�0; p0i� l0ig whereb�0 satis�esPj2N f

CEA
j (�0) = [

P
j2N p

0
j]: Since l

0
i = li � k and l0j = lj for all j 2 Nn fig ;

we deduce that b�0 = b�: Then,
fCEAi (�0) = li � k +minfb�; pi � k � (li � k)g

= li +minfb�; pi � lig � k
= fCEAi (�)� k;

which is what we wanted to prove.

(P3.4) We show that fCEA does not satisfy the following properties on PS.
Strategy-proofness. Consider the problems (N;�) and (N;�0) where N = f1; 2g,

p = (0:4; 0:8) and p0 = (0:6; 0:8): Then, fCEA (�) = (0:2; 0:8) and fCEA (�0) = (0:3; 0:7) :
Since 0:3 �1 0:2; fCEA does not satisfy strategy-proofness because agent 1 manipulates
fCEA at pro�le � via �01 :
Group rationality. It follows from (P3.3) and (P2.4).

Envy-freeness. Consider the problem (N;�) where N = f1; 2g and p = (0:6; 0:8):

Then, fCEA (�) = (0:3; 0:7) ; which means that fCEA is not envy-free because agent 1
strictly prefers 0:7 to 0:3:

Envy-freeness on losses. It follows from (P3.3) and (P2.5).

Justi�ed envy-freeness on losses. Consider the problem (N;�) where N = f1; 2g and
p = (0:6; 0:8): Then, fCEA (�) = (0:3; 0:7) ; which means that fCEA does not satisfy

justi�ed envy-freeness on losses because agent 1 strictly prefers 0:6 + (0:7� 0:8) = 0:5
to 0:3: �
Theorem 1, the main result of the paper, characterizes axiomatically the constrained

equal losses rule fCEL and the constrained equal awards rule fCEA on the domain of

symmetric single-peaked preferences.

Theorem 1 The following two characterizations hold.

(T1.1) The constrained equal losses rule fCEL is the unique rule on PS satisfying indi-
vidual rationality, e¢ ciency, and justi�ed envy-freeness on losses.

(T1.2) The constrained equal awards rule fCEA is the unique rule on PS satisfying
individual rationality, e¢ ciency, and envy-freeness on awards.
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Proof By Proposition 3, fCEL satis�es individual rationality, e¢ ciency and justi�ed

envy-freeness on losses and fCEA satis�es individual rationality, e¢ ciency and envy-

freeness on awards.

Before we prove uniqueness for each rule separately, let �2 PS be a problem and

let f be a rule satisfying individual rationality and e¢ ciency. Suppose that
P

j2N pj �
[
P

j2N pj] (the proof for the other case is analogous, and hence we omit it). Since f is

e¢ cient, by (E2.1) and (E2.2) in (P2.2) of Proposition 2,
P

j2N fj (�) = [
P

j2N pj] and

fi (�) � pi (8)

for all i 2 N: By individual rationality and (P2.1) in Proposition 2, fi (�) � li for all

i 2 N:
We �rst show uniqueness of fCEL: For each i 2 N; fi (�) = pi � xi where 0 � xi �

pi�li. Assume that xj < xi for some pair i; j 2 N: By single peakedness, pi�xj �i pi�xi:
Since

fi (�) = pi � xi �i pi � xj = pi + (fj (�)� pj)

holds, by justi�ed envy-freeness on losses, there must exist yj 2 N such that fj (�) ' yj:
By individual rationality,

fj (�) = lj: (9)

Let S be the set of agents with the largest loss from the peak: Namely, S = fi0 2 N j
xi0 � xj0 for all j0 2 Ng: Since N is �nite, S 6= ;: If S = N; then there exists x such

that x 2 [0; pi � li] and fi(�) = pi � x for all i 2 N: Set b� = x: Assume S ( N: For

all j; j0 2 S; xj = xj0 : Set b� = xj and observe that fj(�) = pj � b� � pj � lj: If j =2 S;
then there exists i 2 S such that xj < xi: By (9), fj (�) = lj: Since b� > xj for all j =2 S;
fj(�) = lj = pj �minfb�; pj � ljg: Thus, f(�) = fCEL(�):
We now show uniqueness of fCEA: By (8), for each i 2 N , fi (�) = li + ai and

0 � ai � pi � li.
We �rst prove that if ai < aj for some i; j 2 N; then ai = pi � li: Assume not;

there exist i; j 2 N such that ai < aj and ai < pi � li: Let x 2 R+ be such that
x 2 (ai;min faj; pi � lig] : Since fi (�) = li + ai < li + x < pi, single-peakedness implies
that li + x �i fi (�) where x 2 (ai; aj], contradicting envy-freeness on awards.
Let S be the set of agents with the largest award from the peak: Namely, S = fi0 2 N j

ai0 � aj0 for all j0 2 Ng: Since N is �nite, S 6= ;: If S = N; then there exists a such that
a 2 [0; pi�li] and fi(�) = pi+a for all i 2 N: Set b� = a: Assume S ( N: For all j; j0 2 S;
aj = aj0 : Set b� = aj and observe that fj(�) = lj + b� � pj � lj: If j =2 S; then there exists
i 2 S such that ai > aj: Then, aj = pj � lj: Hence, fj (�) = lj + aj = lj + pj � lj = pj
and pj � lj � b�: Thus, for all j 2 N; fj(�) = fCEAj (�): �
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Remark 2 The two sets of properties used in the two characterizations of Theorem 1

are independent.

(R2.1) The rule f de�ned by setting fi (�) = [pi] for all �2 PS and all i 2 N satis�es

individual rationality and justi�ed envy-freeness on losses but it is not e¢ cient.

(R2.2) The rule fEL satis�es e¢ ciency and justi�ed envy-freeness on losses but is not

individually rational.

(R2.3) The rule fCEA satis�es individual rationality and e¢ ciency but it does not satisfy

justi�ed envy-freeness on losses.

(R2.4) The rule f de�ned by setting fi (�) = [pi] for all �2 PS and all i 2 N satis�es

individual rationality and envy-freeness on awards but it is not e¢ cient.

(R2.5) The rule fEA satis�es e¢ ciency and envy-freeness on awards but it is not indi-

vidually rational.

(R2.6) The rule fCEL satis�es individual rationality and e¢ ciency but it is not envy-

freeness on awards.

5.3 Individual rationality and strategy-proofness

We now study the set of rules satisfying individual rationality and strategy-proofness

on the set of symmetric single-peaked preferences. There are many rules satisfying

both properties. For instance, the rule that selects f (�) = ([pi])i2N for all �2 PS is
individually rational and strategy-proof. But there are many more, yet some of them are

very di¢ cult to justify as reasonable solutions to the problem. Consider the following

family of rules. For each vector x 2 RN+ satisfying
P

i2N xi 2 N; de�ne fx as the rule
that when x is at least as good as ([pi])i2N for each i 2 N; fx selects x: Otherwise fx

selects ([pi])i2N : Formally, �x x 2 RN+ satisfying
P

i2N xi 2 N. For each problem �2 PS;
set

fx (�) =
(
x if xi �i [pi] for all i 2 N
([pi])i2N otherwise.

It is easy to see that each rule in the family ffx j x 2 RN+ and
P

i2N xi 2 Ng is individu-
ally rational and strategy-proof. However, they are arbitrary and non-interesting. Thus,

we ask whether it is possible to identify a subset of individually rational and strategy-

proof rules satisfying additionally a basic, weak and desirable property. We interpret

Proposition 4 below as giving a negative answer to this question: individual rationality

and strategy-proofness are not compatible even with unanimity, a very weak form of

e¢ ciency.
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Proposition 4 There is no rule on PS satisfying individual rationality, strategy-
proofness and unanimity.

Proof To obtain a contradiction, assume that f is a rule satisfying individual ratio-

nality, strategy-proofness and unanimity. Consider the problem (N;�) 2 PS where
N = f1; 2g and p = (0:2; 0:8): Since preference are symmetric single-peaked we identify,
in the remainder of this proof, each preference �i with its peak pi; and so we write f(p)
instead of f(�): By unanimity, f (0:2; 0:8) = (0:2; 0:8) : Consider f (0:2; 0:5) and suppose
that f2 (0:2; 0:5) > 0:8; then, agent 2 manipulates f at pro�le (0:2; 0:5) via 0:8. This

contradicts strategy-proofness of f: Hence, f2 (0:2; 0:5) � 0:8.
Claim: f2 (0:2; 0:5) = 0:8.

Proof: Suppose f2 (0:2; 0:5) < 0:8. Thus, f (0:2; 0:5) = (0:2 + x; 0:8� x) where 0 < x <
0:8. By individual rationality of agent 1; 0 � 0:2 + x � 0:4, which means that x � 0:2:
By individual rationality of agent 2; 0 � 0:8� x � 1; which means that x � 0:8; which
is not binding. Thus, 0 < x � 0:2. Let y 2 R+ be such that

0:2� x � y < 0:2: (10)

Thus, f1 (y; 0:5) � 0:2 + x (otherwise agent 1 manipulates f at pro�le (y; 0:5) via 0:2):
To show that indeed f1 (y; 0:5) = 0:2 + x we distinguish between two di¤erent cases:

1. 0:2�x < f1 (y; 0:5) < 0:2+x: Then, agent 1 manipulates f at pro�le (0:2; 0:5) via
y: This contradicts strategy-proofness of f:

2. f1 (y; 0:5) � 0:2 � x. Since f satis�es individual rationality two subcases are

possible.

(a) f1 (y; 0:5)+f2 (y; 0:5) = 1: Then, f2 (y; 0:5) � 0:8+x: By unanimity, f2 (y; 1� y) =
1 � y. Thus, agent 2 manipulates f at pro�le (y; 0:5) via 1 � y because
0:5 < 1 � y < 0:8 + x; where the two inequalities follow from (10). This

contradicts strategy-proofness of f:

(b) f1 (y; 0:5) + f2 (y; 0:5) = 0: Then, f2 (y; 0:5) = 0: Again, agent 2 manipulates

f at pro�le (y; 0:5) via 1� y. This contradicts strategy-proofness of f:

Hence, f1 (y; 0:5) = 0:2 + x. We show now that f1(0:2 � x; 0:5) = 0:2 + x: If f1(0:2 �
x; 0:5) > 0:2 + x then 1 manipulates f at pro�le (0:2 � x; 0:5) via y: Suppose f1(0:2 �
x; 0:5) =: z < 0:2+x: If z = y; then agent 1 manipulates f at pro�le (y; 0:5) via 0:2�x. If
z > y; then agent 1 manipulates f at (y; 0:5) via 0:2� x; because jy � zj < jy � 0:2� xj
since z � y < 0:2 + x � y if and only if z < 0:2 + x: If z < y; then agent 1 would

26



manipulate f at (y; 0:5) via 0:2 � x, provided that jy � zj < jy � 0:2� xj : But since
y � z < 0:2 + x � y if and only if (i) 2y � 0:2 � x < z and (ii) z < 0:2 + x; but (i)

and (ii) hold since 2y � 0:2 � x < z < 0:2 + x holds because y < 0:2 < 0:2 + x: Hence,
f1(0:2 � x; 0:5) = 0:2 + x: Now, by individual rationality of agent 1; j0:2� x� 0j �
j0:2� x� 0:2� xj ; so 0:2 � x � 2x; or equivalently, x � 0:2

3
: Consider now the pro�le

(0:2� x; 0:5) instead of (0:2; 0:5) : Since f1 (0:2� x; 0:5) = 0:2 � x + 2x; applying the
same argument as for the pro�le (0:2; 0:5) we obtain that f1 (0:2� 3x; 5) = 0:2 + x: By
individual rationality of agent 1; j0:2� 3x� 0j � j0:2� 3x� 0:2� xj ; so 0:2� 3x � 4x;
or equivalently, x � 0:2

7
: Since x > 0 and it is �xed, repeating this process several times

we will eventually �nd a contradiction with individual rationality of agent 1. Then,

f (0:2; 0:5) = (0:2; 0:8) ; which proves the claim. �
Consider now the pro�le (0:2; 0:39) : We distinguish among three di¤erent cases:

1. f1 (0:2; 0:39) + f2 (0:2; 0:39) � 2: By individual rationality, f1 (0:2; 0:39) � 0:4 and
f2 (0:2; 0:39) � 0:78; which is a contradiction.

2. f1 (0:2; 0:39)+f2 (0:2; 0:39) = 1: By individual rationality of agent 1, f1 (0:2; 0:39) �
0:4, and so 0:6 � f2 (0:2; 0:39) : By individual rationality of agent 2; f2 (0:2; 0:39) �
0:78: Thus, agent 2 manipulates f at pro�le (0:2; 0:5) via 0:39. This contradicts

strategy-proofness.

3. f1 (0:2; 0:39) + f2 (0:2; 0:39) = 0: Then, f1 (0:2; 0:39) = f2 (0:2; 0:39) = 0: Similarly

to the case of pro�le (0:2; 0:5) ; we can prove that f (0:38; 0:39) = (0:38; 0:62). Thus,

agent 1 manipulates f at pro�le (0:2; 0:39) via 0:38. This contradicts strategy-

proofness.

Since we have obtained a contradiction in each of the possible cases, there does not

exist a rule satisfying simultaneously the properties of individual rationality, strategy-

proofness and unanimity. �

By (R1.1) in Remark 1 and Proposition 4 we obtain the following Corollary.

Corollary 2 There is no rule on PS satisfying individual rationality, strategy-proofness
and e¢ ciency.

6 Final remarks

Before �nishing the paper we deal with two natural questions. First, are our results

generalizable to rules de�ned on P, the set of problems where agents have single-peaked
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preferences? Second, how do well-known rules, used to solve the division problem with

a �xed amount of the good, behave when the number of units to allot is endogenous?

We partially answer the two questions separately in each of the next two subsections.

6.1 Results for general single-peaked preferences

Obviously, all the impossibility results we have obtained for rules operating on the domain

of symmetric single-peaked preferences also hold when they operate in the larger domain.

Proposition 5 contains some results on rules operating on the full domain of single-

peaked preferences. But before stating it, we need some additional notation to refer to

the extremes of the individually rational intervals for those preferences. Let �i be a
single-peaked preference with peak pi: De�ne

bi =

(
[pi]l if [pi]l �i [pi]u
[pi]u otherwise.

(11)

By continuity and single-peakedness, there are two numbers bli; bui 2 R+ satisfying the
following conditions: (i) bi 2 fbli; buig; (ii) bli � bui; (iii) for each yi 2 [bli; bui]; yi �i bi; and
(iv) for all yi =2 [bli; bui]; bi �i yi:
Proposition 5 The following statements hold.

(P5.1) A rule f on P is individually rational if and only if, for all �2 P and i 2 N ,
fi (�) 2 [bli; bui]:
(P5.2) A rule f on P is e¢ cient if and only if, for all �2 P, two conditions hold:
(E5.1)

P
j2N fj (�) 2 f[

P
j2N pj]l; [

P
j2N pj]ug:

(E5.2) For all i 2 N; fi (�) � pi when
P

j2N pj �
P

j2N fj (�) and fi (�) � pi whenP
j2N pj <

P
j2N fj (�) :

(P5.3) There exist rules on P satisfying individual rationality and e¢ ciency.

(P5.4) There exist rules on P satisfying individual rationality and strategy-proofness.

Proof (P5.1) It is obvious.

(P5.2) It is similar to the proof of (P2.2) in Proposition 2, and hence we omit it.

(P5.3) We show that for each �2 P the set of individually rational and e¢ cient

vector of allotments is non-empty. Fix a pro�le �2 P and let p = (p1; : : : ; pn) be

its associated vector of peaks. Similarly to (E5.1), any e¢ cient vector of allotments y

satis�es
P

j2N yj 2 f[
P

j2N pj]l; [
P

j2N pj]ug: For each i 2 N , consider bi de�ned as in
(11). Suppose that

P
j2N bj � [

P
j2N pj]l (the other case is analogous, and hence we

28



omit it). Consider the allotment x = (x1; : : : ; xn) such that, for each i 2 N;

xi =

(
pi if bi = [pi]lbli +minfpi � bli; 
g otherwise,

where 
 satis�es
P

j2N xj = [
P

j2N pj]l. By continuity of the vector x = (x1; : : : ; xn)

with respect to the parameter 
, and the fact that
P

j2N bj � [
P

j2N pj]l holds, such 


exists. By de�nition, xi 2 [bli; pi] for all i 2 N and so, xi is individually rational. Suppose

that x is not e¢ cient. By the de�nition of x; the Pareto improvement requires a di¤erent

integer choice. Hence, there exists y 2 RN+ such that
P

j2N yj = [
P

j2N pj]u and yi �i xi
for all i 2 N: Thus, y is a feasible vector of allotments satisfying individual rationality
and e¢ ciency.

(P5.4) Consider the rule f that, for each �2 P and each i 2 N; fi (�) = bi, where bi
is de�ned as in (11): It is immediate to see that f is individually rational and strategy-

proof. �

In this case fCEL and fCEA are not e¢ cient, as next example shows.

Example 3 Consider the problem (N;�) 2 P whereN = f1; 2; 3g and p = (0:15; 0:5; 0:65) :
Thus, fCEL(N;�) = (0:05; 0:4; 0:55) and fCEA(N;�) = (0:15; 0:27; 0:57) : If we take

y = (0:15; 0:9; 0:95) and � such that 0:9 �2 0:4 and 0:95 �3 0:57 we have that fCEL and
fCEA are not e¢ cient. �

6.2 Other rules

In the classical division problem, where a �xed amount of the good has to be allotted, the

uniform rule emerges as the one that satis�es many desirable properties. For instance,

Sprumont (1991) shows that it is the unique rule satisfying strategy-proofness, e¢ ciency

and anonymity. Sprumont (1991) also shows that in this characterization anonymity

may be replaced by non-envyness and Ching (1994) shows that in fact anonymity may

be replaced by the weaker requirement of equal treatment of equals. Sönmez (1994)

shows that the uniform rule is the unique one satisfying consistency, monotonicity and

individual rationality from equal division. Thomson (1994a, 1994b, 1995 and 1997)

contains alternative characterizations of the uniform rule using the properties of one

sided resource-monotonicity, converse consistency, weak population-monotonicity and

replication invariance, respectively. On the other hand, if one is concerned mostly with

incentives and e¢ ciency issues (and leaves aside any equity principle), sequential dicta-

tor rules emerge as natural ways of solving the classical division problem, since they are

strategy-proof and e¢ cient. However, we brie�y argue below that the natural adapta-
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tions of all these rules to our setting with endogenous integer units of the good are far

from desirable since they are neither individually rational nor strategy-proof.

6.2.1 Uniform rule

We adapt the uniform rule by selecting the e¢ cient number of integer units (using our

tie-breaking criterion whenever there are two of them) and allotting this amount using

the uniform rule.

Extended uniform (fEU). For all �2 P and i 2 N , set

fEUi (�) =
(
max fpi; �g if

P
j2N pj � [

P
j2N pj]

min fpi; �g if
P

j2N pj < [
P

j2N pj];

where � is the unique real number for which
P

j2N f
EU
j (�) = [

P
j2N pj] holds.

Proposition 6 The extended uniform rule fEU is e¢ cient on P (and hence on PS)
but it is neither individually rational nor strategy-proof on PS (and hence, on P).

Proof The same argument used to prove (E5.1) and (E5.2) on P shows that fEU is

e¢ cient on P (and hence on PS). To see that fEU is neither individually rational nor
strategy-proof on PS consider the problem (N;�) 2 PS where N = f1; 2; 3g and p =
(0:2; 0:2; 0:9) : Then fEU (�) = (0:2; 0:2; 0:6) : Since agent 3 strictly prefers 1 to 0:6, fEU

is not individually rational. To see that fEU is not strategy-proof consider the symmetric

single-peaked preference �03 with p03 = 1:12: Then, fEU (�03;��3) = (0:44; 0:44; 1:12) :

Since 3 strictly prefers (according to �3) 1:12 to 0:6, agent 3 manipulates fEU at pro�le
� via �03 : �

6.2.2 Sequential dictator

We adapt the sequential dictator rule to the setting where the integer number of units

to be allotted is endogenous. Fix an ordering on the set of agents and let them select

sequentially, following the ordering, the amount they want (their peak) among the set

of all e¢ cient allocations. Formally, let � : N ! f1; : : : ; ng be a one-to-one mapping
de�ning an ordering on the set of agents N ; namely, for i; j 2 N , �(i) < �(j) means that
i goes before j in the ordering �:

Sequential dictator at � (fSD�). For all �2 PS and i 2 N , set

fSD�i (�) =

8>>>><>>>>:
minfpi;maxf[

P
k2N

pk]�
P

fj02Sj�(j0)<�(i)g
pj0 ; 0gg if �(i) < �(j) for some j

maxf[
P
k2N

pk]�
P

fj02Sj�(j0)<�(i)g
pj0 ; 0g otherwise.

30



Proposition 7 The sequential dictator rule fSD� at any ordering � is e¢ cient on PS

but it is neither individually rational nor strategy-proof on PS.

Proof The fact that, for any �xed ordering �, fSD� is e¢ cient on P follows imme-

diately from its de�nition and (P5.2) in Proposition 5. To see that fSD� is neither

individually rational nor strategy-proof on PS consider the problem (N;�) 2 PS where
N = f1; 2g and p = (0:26; 0:26):Without loss of generality, let �(i) = i for i = 1; 2: Then,
fSD� (�) = (0:26; 0:74). Since bu2 = 0:52; fSD� is not individually rational. Moreover,
since fSD�(�1;�02) = (0; 0); where p02 = 0; agent 2 manipulates fSD� at pro�le � via

�02 : Hence, fSD� is not strategy-proof. �
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