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Abstract: Matching models with contracts have been extensively studied in the

last decade as a generalization of the classical matching theory. Matching in

networks is an even more general model where �rms trade goods via bilateral

contracts as well as supply chain matching. In previous literature on this model,

it was shown that a natural substitutability condition characterizes the maximal

domain of �rm preferences for which the existence of stable allocations is guar-

anteed. Moreover, it was argued that these conditions are su¢ cient to obtain a

suitable lattice structure of the set of all stable allocations. In this paper, we

exhibit an inconsistency in the last point through an example, and introduce

an additional condition over �rm preferences in order to recover an appropriate

lattice structure.
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1 Introduction

Hat�eld and Milgrom (2005) presented an uni�ed framework of many-to-one matching with

contracts, which includes the two-sided matching and package auction models as well as

labor markets model of Kelso and Crawford (1982) as special cases. Later, some general-

ization to many-to-many matching models with contracts were considered, for instance, in
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Klaus and Markus (2009) and Hat�eld and Kominers (2010). Several results were gener-

alized from the classical matching theory (without contracts) to matching with contracts,

including the existence of stable allocations and lattice structure of the set of stable out-

comes under substitutability conditions.

Hat�eld and Kominers (2012) introduced a many-to-many matching model in networks,

which generalizes the above-mentioned matching models with contracts. In this model,

each �rm is assigned to other �rms via bilateral contracts which specify their roles of buyer

or seller, and the terms of the exchange. In general, there is not a clear separation between

two sides of the market: a �rm can either be the seller or the buyer in di¤erent contracts.

This model can describe, as example, an industrial process involving a variety of agents

such that raw material suppliers, manufacturers, distributors, traders, consumers, etc.

Hat�eld and Kominers (2012) considered two conditions, acyclicity and full substi-

tutability, and shown that in the presence of them, the set of stable allocations is non-empty.

Moreover, they proved that the existence of stable allocations cannot be guaranteed if either

of both conditions is violated. Acyclicity means that no �rm may both buy from and sell

to another �rm, directly or through intermediaries; and full substitutability is a natural

generalization the substitutability concepts preexisting in the matching literature.

In order to fully generalize the key results of classical matching theory for the matching

model in networks with preferences satisfying acyclicity and full substitutability, they stated

a correspondence between the set of stable allocations and the set of �xed points of an

isotone operator, which has a lattice structure according to Tarski�s �xed point theorem.

Nevertheless, this correspondence is insu¢ cient to obtain a suitable lattice structure for

the set of stable allocations because it is not bijective. We prove the last assertion through

an example where acyclicity and full substitutability are ful�lled. In this example, when

considering each of both binary relations over the set of stable allocations introduced in

Hat�eld and Kominers (2012), the respective optimal stable allocations are not unique and

the opposition of interest results does not hold. The root of the problem lies in the binary

relations, which follows from the preferences of the �rms which act exclusively as seller or

exclusively as buyer, overlooking the preferences of the remaining �rms.

Finally, we introduce new partial orders which extend Blair´s partial orders to the cur-

rent framework and take into account all �rms�preferences. Then, we de�ne an additional

restriction over the preferences, regularity, and prove that the set of stable allocations has

lattice structure with respect to the partial orders introduced by us if the �rms�preferences

satisfy acyclicity, full substitutability and regularity. Regularity states that the preferences
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of a �rm over the sets of contracts where she acts as a seller remain unchanged before mod-

i�cations of the set of contracts where she acts as a buyer, and vice versa. The matching

model in networks with preferences satisfying acyclicity, full substitutability, and regularity

that we study here, strictly contains the many-to-many matching model with contracts.

The paper is organized as follows. In Section 2 we describe the model and de�ne

additional properties necessary to prove our results. Moreover, we present the example

which we referred to earlier. In Section 3 we present and show the main results of this

paper.

2 Preliminaries results

Following Hat�eld and Kominers (2012), we described the Matching Market in Networks

as follows. There is a �nite set F of �rms, and a �nite set X of contracts. We assume that

each contract x 2 X is bilateral, so that it associates only one buyer xB 2 F with only

one seller xS 2 F: Each �rm f can sign more than one contract, including several di¤erent

contracts with any other �rm. A �rm can act as seller in some contracts, and as buyer in

others.

For every subset of contracts Y � X and every �rm f 2 F; we denote the subset of
contracts in Y associated with �rm f as

Y f = fx 2 Y : f 2 fxB; xSgg;

and the subsets of contracts contained in Y where f 2 F acts as buyer or as seller, respec-
tively, as

Y fB = fx 2 Y : f = xBg

and

Y fS = fx 2 Y : f = xSg:

Two-sided matching markets with contracts can be regarded as special cases of matching

markets in networks where either Xf
B = ? or X

f
S = ? for every f 2 F:

We assume that X is acyclic, i.e., there does not exit a set of contracts

fx1; ::; xNg � X

such that x1B = x
2
S; ::::; x

N�1
B = xNS ; x

N
B = x

1
S:
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Observe that if the set of contract X is acyclic, then there exist at least one f 2 F such
that Xf

B = ? and one f 0 2 F such that Xf
S = ?. We call those agents exclusive buyers

and exclusive sellers respectively. Many exclusive sellers and exclusive buyers may exist.

We call mixed �rms to those f 2 F such that Xf
B 6= ? and X

f
S 6= ?:

Each agent f 2 F has a re�exive, antisymmetric, transitive and complete preference

relation �f over the power set of Xf :

A pro�le of preferences P = ((�f )f2F )is a set consisting of one preference relation per
agent. A speci�c matching in networks market is denoted by (X; P ) since it is completely

determined by the set of all existing contractsX and the pro�le of preferences P:We denote

P the set of all pro�les of preferences.
Given Y � X and f 2 F; the choice set of f from Y is the best subset of Yf according

to �f : Formally,
Cf (Y ) = max

�f
2Y

f

:

Then, the rejected set of f from Y is

Rf (Y ) = Y f � Cf (Y ):

Moreover, the choice set of f as a buyer when f has access to the contracts in Y � X
for which f is a buyer, and to the contracts in Z � X for which f is a seller, is de�ned as

CfB(Y j Z) =
n
x 2 Cf

�
Y fB [ Z

f
S

�
: xB = f

o
:

Also, we denote

CB(Y j Z) =
[
f2F

CfB(Y j Z):

Analogously, the choice set of f as a seller when f has access to the contracts in
Y � X for which f is a buyer, and to the contracts in Z � X for which f is a seller, is

de�ned as

CfS(Z j Y ) =
n
x 2 Cf

�
Y fB [ Z

f
S

�
: xS = f

o
:

Also, we denote

CS(Z j Y ) =
[
f2F

CfS(Z j Y ):

Finally, the buyer-rejected and seller-rejected sets are de�ned as

RfB(Y j Z) = Y
f
B � C

f
B(Y j Z) and RfS(Z j Y ) = Z

f
S � C

f
S(Z j Y )

respectively.
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De�nition 1 Given a matching in networks market (X; P ); an allocation is a set of

contracts Y � X:

We are particularly interested in the study of some sets of contracts which play a central

role in the analysis of matching models: the stable allocations.

De�nition 2 An allocation Y is stable if it is:
i) Individually rational (IR): 8f 2 F; Cf (Y ) = Y f :
ii) Unblocked: There does not exist a non empty set Z * Y such that Zf � Cf (Y [Z); for
every f:

Let S(X; P ) be the set of all stable allocations in the market (X; P ):

Hat�eld and Kominers (2012) introduced the full substitutability condition as an ex-

tension of the classical substitutability. Roughly speaking, substitutability means that the

agents do not consider the contracts as complementary. In the framework of matching in

networks, the lack of complementarity between two contracts is analyzed in di¤erent ways,

depending on the role played by the agent in both contracts.

When the agent plays the same role in both contracts:

De�nition 3 The preferences of f 2 F are same-side substitutable (sss) if for all
Y 0 � Y � X and Z 0 � Z � X;

RfB(Y
0 j Z) � RfB(Y j Z) and RfS(Z

0 j Y ) � RfS(Z j Y ):

Observe that the last condition can be rewritten as

CfB(Y j Z) \ Y 0 � C
f
B(Y

0 j Z) and CfS(Z j Y ) \ Z 0 � C
f
S(Z

0 j Y ):

When the agent plays di¤erent roles in both contracts:

De�nition 4 The preferences of f 2 F are cross-side complementary (csc) if for all
Y 0 � Y � X and Z 0 � Z � X;

RfB(Y j Z) � R
f
B(Y j Z 0) and RfS(Z j Y ) � R

f
S(Z j Y 0):
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Observe that the last condition can be rewritten as

CfB(Y j Z 0) � C
f
B(Y j Z) and CfS(Z j Y 0) � C

f
S(Z j Y ):

A preferences f 2 F is fully substitutable if satis�es both sss and csc.

The next properties follow fom the previous de�nitions. For every f 2 F and every

Y; Z;A � X :

(P1) CfB(Y j Z) � A � Y implies CfB(A j Z) = CfB(Y j Z); and CfS(Y j Z) � A � Y

implies CfS(A j Z) = C
f
S(Y j Z):

(P2) CfB(C
f
B(Y j Z) j Z) = C

f
B(Y j Z); and C

f
S(C

f
S(Y j Z) j Z) = C

f
S(Y j Z):

Moreover, if f 0s preferences satisfy sss, we have

(P3) CfB(Y [ A j Z) \ A � C
f
B(A j Z); and C

f
S(Y [ A j Z) \ A � C

f
S(A j Z)

(P4) CfB(Y [A j Z) = C
f
B(C

f
B(Y j Z)[A j Z); and C

f
S(Y [A j Z) = C

f
S(C

f
S(Y j Z)[A j Z):

Hat�eld and Kominers (2012) de�ne the following two binary relations over the set of

stable allocations: given two stable allocations Y and Y 0:

Y �S Y 0 , Yf �f Y 0f for all f 2 F such that X
f
B = ?

and

Y �B Y 0 , Yf �f Y 0f for all f 2 F such that X
f
S = ?

Observe that such binary relations only care of �rms f that are either exclusive sellers or

exclusive buyers.

A stable allocation Y is called seller-optimal if Y �S Y 0 for all stable allocation Y 0

and buyer-optimal if Y �B Y 0 for all stable allocation Y 0

Hat�eld and Kominers (2012) prove that the set of stable allocations is non-empty if the

set of contract is acyclic and all the agents have full substitutable preferences. In order to

do that, they consider the �xed points of an isotone operator and show that each of them

corresponds to a stable allocation. The existence of such �xed points (and the subsequent

existence of stable allocations) is guaranteed by Tarski�s �xed point theorem. Some details

are given below.

Consider the following binary relation, w; over the set of ordered pairs of allocations
2X � 2X :

(Y 1; Y 2) w (X1; X2) if and only if (X1 � Y 1 and Y 2 � X2)

for every X1; X2; Y 1; Y 2 � X: Moreover,

(Y 1; Y 2) A (X1; X2) if and only if (Y 1; Y 2) w (X1; X2) and X1  Y 1 or Y 2  X2:
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Let � : 2X�2X ! 2X�2X be the operator de�ned as � (X1; X2) = (�B (X
1; X2) ; �S (X

1; X2))

for every (X1; X2) 2 2X � 2X; where

�B
�
X1; X2

�
= X�RS(X2 j X1)

and

�S
�
X1; X2

�
= X�RB(X1 j X2):

Because the operator � is isotone with respect to partial orderw, Tarski�s �xed point the-
orem guarantees that the set of �xed points of �; FP (�); is non-empty and that (FP (�);w)
has a lattice structure.

Remark 1 Let (X1; X2) be a �xed point of �: Because X1 = �B(X
1; X2) = X�RS(X2 j

X1) and RS(X2 j X1) � X2; then X1 [X2 = X:

Given (X1; X2) a �xed point of �: The intersection of its components; X1 \ X2; is a

stable allocation. This fact imply that the set of stable allocations is non-empty. Moreover,

given a stable allocation Y; there exists at least one �xed point of �; (Y 1; Y 2) ; such that

Y = Y 1 \ Y 2: However, this correspondence between the set of all �xed points of � and
the set of stable allocations is not necessarily bijective as Hat�eld and Kominers (2012)

assume1. We show this fact through the next example.

Example 1 Consider the market (X; P ) where X = fv; w; x; yg is the set of contracts,
F = ff1; f2; f3g is the the set of �rms, and the pro�le of preferences P is de�ned as follows:
�f1 : fvg �f1 fwg �f1 ?
�f2 : fw; xg �f2 fv; xg �f2 fw; yg �f2 fv; yg �f2 ?
�f3 : fxg �f3 fyg �f3 ?
The following graph illustrates the fact that X is acyclic:

f1

v

�!
�!
w

f2

x

�!
�!
y

f3

Observe that Xf1
S = fv; wg;Xf2

S = fx; yg; Xf3
S = ?; Xf1

B = ?; Xf2
B = fv; wg and Xf3

B =

fx; yg:
It can be veri�ed that each �rm f has fully substitutable preferences and that Y = fw; xg

1A similar statement was made by Hat�eld and Milgrom (2005), for the models of Matching Markets

with Contracts. Pepa Risma (2016) has shown that this statement is false.
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is a stable allocation.

Let Y 1 = X and Y 2 = fw; xg: Then,

�B(Y
1; Y 2) = X�? = X

and

�S(Y
1; Y 2) = X� fy; vg = fw; xg:

So, � (Y 1; Y 2) = (�B (Y
1; Y 2) ; �S (Y

1; Y 2)) = (X;fw; xg) = (Y 1; Y 2), i.e., (Y 1; Y 2) is a �x
point of �: Moreover,

Y 1 \ Y 2 = Y:

Now, consider Y
1
= fw; x; vg and Y 2 = fw; x; yg: Then,

�B(Y
1
; Y

2
) = X� fyg = fw; x; vg = Y 1

and

�S(Y
1
; Y

2
) = X� fvg = fw; x; yg = Y 2:

Consequently, �(Y
1
; Y

2
) =

�
�B(Y

1
; Y

2
); �S(Y

1
; Y

2
)
�
= (Y

1
; Y

2
); i.e, (Y

1
; Y

2
) is another

�x point of �: Observe that

Y 1 \ Y 2 = Y = Y 1 \ Y 2:

Therefore, (Y 1; Y 2) and (Y
1
; Y

2
) are two di¤erent �xed points of � corresponding to the

same stable allocation fw; xg: �

Hat�eld and Kominers (2012), in page 187, state:

"We demonstrate that fully substitutable preferences are su¢ cient to guarantee the exis-

tence of a lattice of stable allocations when the contract set is acyclic, and for the standard

opposition of interest results to hold."

This quote suggests that, if the of contracts are acyclic and each �rm has fully substi-

tutable preferences, the set of all stable allocations has a lattice structure with respect to

�S and �B; that there is opposition of interests, and consequently, the existence of unique
seller-optimal and buyer-optimal stable allocations are guaranteed.

This approach is inaccurate. In fact, the binary relations �S and �B are not partial
orders (they are not antisymmetric), contradicting the de�nition of lattice and entailing

undesirable consequences, as we illustrate through the next example.
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Example 1 (continued) The set of stable allocations is

S(X; P ) = ffv; xg; fv; yg; fw; xg; fw; ygg :

In fact, let Y be a stable set of contracts. Since Y is IR:

i) fv; wg * Y:
ii) fy; zg * Y:
Because Y is unblocked, then we have:

iii) either v 2 Y or w 2 Y; otherwise (f1; f2) is a blocking pair.
iv) either x 2 Y or y 2 Y; otherwise (f2; f3) is a blocking pair.
Thus S(X; P ) = ffv; xg; fv; yg; fw; xg; fw; ygg : Observe that both fv; xg and fv; yg are
both seller-optimal stable allocations according to �S. Similarly, fv; xg and fw; xg are both
buyer-optimal stable allocations according to �B.
Moreover, the opposition of interest results does not hold because fv; yg �B fw; xg whereas
fw; xg �S fv; yg fails. �

3 Structure of the Set of stable Allocations

As we observed previously, one of the reasons why the binary relations �S and �B fail to
extend the classic results on the structure of set of stable allocations is that they only care

of �rms f that are either exclusive sellers or exclusive buyers. In this section, we introduce

two partial orders over the set of stable allocations which consider the preferences of all the

�rms in their roles of seller and buyer respectively.

We de�ne �S and �B as follows:

De�nition 5 Given two stable allocations Y and Z,

Y �S Z , CS (Y [ Z j Y [ Z) = Y

and

Y �B Z , CB (Y [ Z j Y [ Z) = Y:

Consider the particular market introduced in Example 1. Observe that our partial

orders recover the lattice structure of the set of stable allocation and the existence of seller

and buyer optimal allocations
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That is, according to �S we have:

fv; xg
% -

fv; yg fw; xg
- %

fw; yg
and according to �B we have:

fw; yg
% -

fv; yg fw; xg
- %

fv; xg

Our �ndings may not be true in general, as we shows in the next example where acyclic-

ity and full substitutability are ful�lled but the set of all stable contracts has not lattice

structure with respect to �S or �B.

Example 2 Consider the market (X; P ) where X = fv; w; x; yg is the set of contracts,
F = ff1; f2; f3g is the the set of �rms, and the pro�le of preferences P is de�ned as follows:
�f1 : fvg �f1 fwg �f1 ?
�f2 : fw; x; yg �f2 fw; xg �f2 fw; yg �f2 fv; xg �f2 fv; x; yg �f2 fv; yg �f2 ?
�f3 : fxg �f3 fyg �f3 ?
The following graph illustrates the fact that X is acyclic:

f1

v

�!
�!
w

f2

x

�!
�!
y

f3

In fact, Xf1
S = fv; wg; X

f2
S = fx; yg; X

f3
S = ?; X

f1
B = ?; X

f2
B = fv; wg and X

f3
B = fx; yg:

Observe that all the �rms have fully substitutable preferences and that f2 has not regular

preferences.

The complete set of stable allocations is S(X; P ) = ffv; xg; fv; yg; fw; ygg : By considering
the stable allocationsA = fv; xg andB = fw; yg; we obtainCS (A [B j A [B) = fv; x; yg :
So, neither A�S B nor B �S A are met. Consequently, S(X; P ) has not lattice structure

with respect to �S because it is a set of cardinality three and at least two of its elements
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are not comparable.

Let D = fv; yg; then A [D = fv; x; yg; B [D = fv; w; yg,

CS (A [D j A [D) = [i
�
x 2 Cfi (A [D) : xS = fi

	
= fv; xg = A

and

CS (D [B j D [B) = [i
�
x 2 Cfi (B [D) : xS = fi

	
= fv; w; yg

So, A�S D; A and B are incomparable, B and D are incomparable. �

Below, we introduce an additional restriction over the preferences, regularity, under

which the set of all stable allocations will be proved to have lattice structure with respect

to both partial orders �S and �B; assuming that the set of contracts is acyclic and all

�rms have full substitutable preferences:We will also show that such lattices are dual. This

fact manifests the foreseeable opposition of interests involved between sales and purchases.

Moreover, we will see that our partial orders extend to this framework the well-know in

matching theory Blair´s partial orders, which is a desirable property.

We say that a �rm has regular preferences if she keeps constant the preferences over her

contracts as seller when varying her contracts as buyer, and vice versa. Formally,

De�nition 6 The preferences of f 2 F are regular if for all X; Y � Xf
B and Z;W � Xf

S

we have:

i) Y [ Z �f X [ Z implies Y [ Z 0 � X [ Z 0 for all Z 0 � Xf
S whenever X 6= ?:

ii) Y [ Z �f Y [W implies Y 0 [ Z �f Y 0 [W for all Y 0 � Xf
B whenever W 6= ?:

We will denote R the set of all pro�les of preferences satisfying full substitutability and

regularity for all �rm f:

Following Hat�eld and Kominers (2012), we de�ne sequentially a function T : S(X; P ) �!
FP (�):

Let Z be a stable allocation.

Sequence to de�ne T (Z) : Set

Z1 (0) = Z2 (0) = Z:

and

Z1 (n) =
�
x 2

�
X� Z2 (n� 1)

�
: xB = fn

	
[ Z1 (n� 1) (1)

Z2 (n) =
n
x 2 Xfn : x 2 RfnS

�
fxg [ Z j Z1 (n)

�o
[ Z2 (n� 1) ;
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for n = 1; 2; :::; N = jF j : Then de�ne

Z1 = Z1(N), Z2 = Z2(N)

and

T (Z) = (Z1; Z2):

Observe that

Z = Z1 (0) � Z1 (1) � ::: � Z1 (N) = Z1

and

Z = Z2 (0) � Z2 (1) � ::: � Z2 (N) = Z2:

Hat�eld and Kominers (2012) show that for every Z 2 S(X; P ), T (Z) = (Z1; Z2) is a

�xed point of � such that Z1 \ Z2 = Z whenever X is acyclic and the agents have full

substitutable preferences. Therefore, T is an inyective function. Moreover, as we will show

later, (T (S(X; P )) ;w) is a sub lattice of (FP (�);w) :

Lemma 1 If Y �S X; thenX2 (n+ 1)�X2 (n) � Y 2 (n+ 1) for every n = 0; :::; N�1:
Proof Given n 2 f0; ::; N � 1g : Consider the following two cases:
a) X

fn+1
S = ?:

Given x 2 X2 (n+ 1)�X2 (n) ; sinceXfn+1
S = ? we have x 2 Rfn+1S (fxg [X j X1 (n+ 1)) =

R
fn+1
S (fxg j X1 (n+ 1)) : Consequently, Cfn+1 (fxg [X1 (n+ 1)) = A for someA � [X1 (n+ 1)]

fn
B :

Thus, A [? �fn+1 A [ fxg :
Since fn+1 has regular preferences, then Z [? �fn+1 Z [ fxg for all Z � X

fn
B . Therefore,

x 2 Rfn+1S (fxg [ Y j Y 1 (n+ 1)) ; i.e. x 2 Y 2 (n+ 1) :
b) X

fn+1
S 6= ?:

Let x =2 Y 2 (n+ 1) ; we will show that x =2 X2 (n+ 1)�X2 (n).

Assume that x 2 X2 (n+ 1)�X2 (n). Then xS = fn+1; x =2 X and x =2 Rfn+1S (fxg [ Y j Y 1 (n+ 1)) :
Because Y 1 (n+ 1) � Y 1 and fn+1 has preferences satisfying csc, we have

x 2 Cfn+1S

�
fxg [ Y j Y 1

�
: (2)

Denote Z := Cfn+1
�
(Y 1)

fn+1
B [ [fxg [ Y ]fn+1S

�
; then x 2 Zfn+1S and

Z
fn+1
B [ Zfn+1S �fn+1 Z

fn+1
B [ A (3)

for all A � [fxg [ Y ]fn+1S with A 6= ?:

11



Because X is individually rational and Xfn+1
S 6= ?, we have that Cfn+1S (X j X) 6=

?: Since fn+1 has fully sustitutable preferences, it follows that Cfn+1S (X [ Y j X [ Y ) =
Y
fn+1
S 6= ?: Moreover, by csc

C
fn+1
S (fxg [ Y j X [ Y ) 6= ?:

Denote W := Cfn+1
�
[X [ Y ]fn+1B [ [fxg [ Y ]fn+1S

�
:

Since W fn+1
S � [fxg [ Y ]fn+1S and W fn+1

S 6= ?; (3) implies that

Z
fn+1
B [ Zfn+1S �fn+1 Z

fn+1
B [W fn+1

S

Then, because fn+1 has regular preferences,

W
fn+1
B [ Zfn+1S �fn+1 W

fn+1
B [W fn+1

S

Since Zfn+1S � [fxg [ Y ]fn+1S ; by de�nition of W; we have

W
fn+1
B [W fn+1

S �fn+1 W
fn+1
B [ Zfn+1S :

Thus, W fn+1
B [W fn+1

S = W
fn+1
B [ Zfn+1S : That is,

W
fn+1
S = Z

fn+1
S = C

fn+1
S

�
fxg [ Y fn+1S j X [ Y

�
:

Therefore,

x 2 Cfn+1S

�
fxg [ Y fn+1S j X [ Y

�
:

Replacing,

C
fn+1
S

�
fxg [ Y fn+1S j X [ Y

�
= C

fn+1
S

�
fxg [ Cfn+1S (X [ Y j X [ Y ) j X [ Y

�
:

By (P2); we have

C
fn+1
S

�
fxg [ Cfn+1S (X [ Y j X [ Y ) j X [ Y

�
= C

fn+1
S (fxg [X [ Y j X [ Y )

and because the preferences of fn+1 satisfy sss,

x 2 Cfn+1S (fxg [X j X [ Y ) :

De�ne Q := Cfn+1
�
[X [ Y ]fn+1B [ [fxg [X]fn+1S

�
; observe that x 2 Qfn+1S ; and

Q
fn+1
B [Qfn+1S �fn+1 Q

fn+1
B [ A; (4)

12



for all A � [fxg [X]fn+1S :

Because X is individually rational, Xfn+1
S = C

fn+1
S (X j X) : Since, the preferences of agent

fn+1 is csc, C
fn+1
S (X j X1 (n+ 1)) = X

fn+1
S :Which imply thatCfn+1S (fxg [X j X1 (n+ 1)) 6=

?:
Denote M := Cfn+1

�
[X1 (n+ 1)]

fn+1
B [ [fxg [X]fn+1S

�
: Since M fn+1

S 6= ?, then

M
fn+1
B [M fn+1

S �fn+1 M
fn+1
B [ E (5)

for all E � [fxg [X]fn+1S : Especially

M
fn+1
B [M fn+1

S �fn+1 M
fn+1
B [Qfn+1S

Since ? 6=M fn+1
S � [fxg [X]fn+1S ,and (4)

Q
fn+1
B [Qfn+1S �fn+1 Q

fn+1
B [M fn+1

S

because fn+1 has regular preferences, we obtain

M
fn+1
B [Qfn+1S �fn+1 M

fn+1
B [M fn+1

S

Which implies that M fn+1
B [M fn+1

S = M
fn+1
B [ Qfn+1S , and consequently M fn+1

S = Q
fn+1
S :

Therefore,

x 2M fn+1
S = C

fn+1
S

�
fxg [X j X1 (n+ 1)

�
and

x =2 Rfn+1S

�
fxg [X j X1 (n+ 1)

�
:

By de�nition of X2; we have that x =2 X2 (n+ 1)�X2 (n) ; a contradiction. This concludes

the proof. �

The following theorem shows an equivalence between the partial order w; de�ned on
the set of �x point of �; and the partial order�S; de�ned over the set of stable allocations.

Theorem 1 Let (X; P ) be a matching in networks market where the pro�le of preferences

P 2 R . Let X and Y be stable allocations. Then:

Y �S X if and only if T (X) w T (Y )

13



Proof Let T (X) = (X1; X2) and T (Y ) = (Y 1; Y 2) be two �xed points of � such that

X1 \X2 = X and Y 1 \ Y 2 = Y .
() We have to show that Y �S X; i.e.,

CfS (X [ Y j X [ Y ) = Y
f
S

for all f 2 F:
Assuming that T (X) w T (Y ), that is, Y 1 � X1 and X2 � Y 2: We consider two cases

separately:

i) Xf
S = ? and Y

f
S = ?:

Clearly CfS (X [ Y j X [ Y ) = ? = Y
f
S , and the result follows.

ii) Xf
S 6= ? or Y

f
S 6= ?:

Since (Y 1; Y 2) is a �xed point of � such that Y 1 \ Y 2 = Y , Y 1 = �B (Y 1; Y 2) and Y 2 =
�S (Y

1; Y 2), then

Y = Y 1 \ Y 2 =
�
X�RS

�
Y 2 j Y 1

��
\ Y 2 =

=
��
X \ Y 2

�
�RS

�
Y 2 j Y 1

��
:

Because X \ Y 2 = Y 2 and RS (Y 2 j Y 1) = Y 2 � CS (Y 2 j Y 1) : Then, Y = CS (Y
2 j Y 1).

Thus,

Y fS = C
f
S

�
Y 2 j Y 1

�
:

Because CfS (Y
2 j Y 1) � X [ Y � Y 2, using (P1) we obtain

Y fS = C
f
S

�
Y 2 j Y 1

�
= CfS

�
X [ Y j Y 1

�
:

Since

CfS(X [ Y j Y 1) =
n
x 2 Cf

��
Y 1
�f
B
[ (X [ Y )fS

�
: xS = f

o
= Y fS

then, there exists Z � (Y 1)fB such that

Cf
�
(X [ Y )fS [

�
Y 1
�f
B

�
= Z [ Y fS

Consequently, for all A � (X [ Y )fS we have

Z [ Y fS �f Z [ A (6)

14



Claim 1 CfS (X [ Y j X [ Y ) 6= ?:
Proof Assume that Xf

S 6= ?: Since X is individually rational, we have

Xf
S = C

f
S (X j X) :

Because the preference of �rm f satis�es csc, then

CfS (X j X [ Y ) = Xf
S 6= ?:

Which imply by de�nition that CfS (X [ Y j X [ Y ) 6= ?:
IfXf

S = ?, then Y
f
S 6= ?: In this case, replacingX

f
S by Y

f
S we obtain thatC

f
S (X [ Y j X [ Y ) 6=

?: This concludes the proof of Claim 1. �
Denote E := CfS (X [ Y j X [ Y ). Because E � Cf (X [ Y ) ; there exist W � (X [ Y )fB
such that

Cf (X [ Y ) =W [ E: (7)

Since f has regular preferences, E 6= ?; and (6),

W [ Y fS �f W [ E

Moreover, (7) implies W [ E = W [ Y fS . Because xB = f for every x 2 W , it follows that
Y fS = E: Thus,

Y fS = C
f
S (X [ Y j X [ Y ) :

This concludes the proof of necessity:

)) Let T (X) = (X1; X2) and T (Y ) = (Y 1; Y 2) : Assume that Y �S X; in order to prove

that T (X) w T (Y ) we have to show that X2 � Y 2 and Y 1 � X1:

i) X2 � Y 2:
Since X = X2 (0) and

SN
k=1 (X

2 (k)�X2 (k � 1)) = X2; Lemma 1 implies that

X2 �X � Y 2 (8)

Because X \ Y � Y 2; we only have to show that X � Y � Y 2:
Given x 2 X�Y , let n 2 f1; :::; N�1g be such that xS = fn. BecauseCfnS (X [ Y j X [ Y ) =
Y fnS ; there exists Z � (X [ Y )

fn
B such that

Cfn (X [ Y ) = Y fnS [ Z:

15



Then, since fn has regular preferences, for all Z 0 � Xfn
B ; A � (X [ Y )

fn
S with A 6= ?; we

have

Z [ Y fnS �f Z [ A

Let A =
�
Y fnS [ fxg

�
, then

Z [ Y fnS �f Z [
�
Y fnS [ fxg

�
for all Z � Xfn

B .

From the "Sequence to de�ne T", it follows that x 2 RfnS (fxg [ Y j Y 1 (n)) ; which implies
x 2 Y 2 (n) � Y 2; and concludes the proof of i):

ii) Y 1 � X1:

Because X \ Y � X1; we only have to show that Y �X � X1 and Y 1 � Y � X1:

a) Y 1 � Y � X1: Let x 2 Y 1 � Y be such that x =2 X1: Because X = X1 [X2; by Lemma

2, then x 2 X2. Moreover, x 2 Y 2 because we have already proved that X2 � Y 2: Thus,
x 2 Y 1 \ Y 2 = Y: This contradicts x 2 Y 1 � Y:
b) Y � X � X1: We will prove that Y � X � X1(i) for some i = 1; :::; N , which implies

that Y �X � X1:

Let x 2 Y f1S � X: Since Y �S X, then Y
f1
S = Cf1S (X [ Y j X [ Y ) : Because f1 is an

exclusive seller, then

x 2 Cf1S (fxg [X j X [ Y ) = Cf1S
�
fxg [X j X2 (0)

�
Therefore x =2 Rf1S (fxg [X j X2 (0)) : By de�nition of T (X) ;

x =2 X2(1)�X2(0):

Because xS = f1; then x =2 X2 � X: From X = X1 [ X2; by Lemma 1, it follows that

x 2 X1:

Assume, inductivelly, that Y fiS � X � X1 for all i = 1; :::; n � 1: Then Y fiS � X1 for all

i = 1; :::; n� 1 since X � X1:

Consider x 2 Y fnS � X. Because of the hypothesis, Y fnS = CfnS (X [ Y j X [ Y ) : Because

the preferences of fn satisfy full subtitutability, Y
fn
B �

n�1S
i=1

Y fiS � X1 and (X [ Y )fnB � X1;

then

x 2 CfnS
�
fxg [X j X1

�
16



Therefore, x =2 RfnS (fxg [X j X1) : This and x =2 X imply x =2 X2 according the de�nition

of T (X) : Then, Remark 1 implies x 2 X1:

By de�nition

X1 (n+ 1) =
�
x 2

�
X�X2 (n)

�
: xB = fn+1

	
[X1 (n)

which implies that �
X1 (n+ 1)�X1 (n)

�B
fn
= ?

Moreover �
X1 (k)�X1 (n)

�B
fn
= ?

for every k > n: Thus, [X1 (n)]
B
fn
= [X1]

B
fn
: ThereforeCfnS (fxg [X j X1) = CfnS (fxg [X j X1 (n)) :

So, x =2 RfnS (fxg [X j X1 (n)). From x =2 X and the de�nition of X2(k); it follows that

x =2 X2: Then, Remark 1 implies that x 2 X1; concluding the proof. �

Now, we present a symmetric result of Theorem 1.

Theorem 2 Let (X; P ) be a matching in networks market where the preference pro�les

P 2 R . Let X and Y be stable allocations. Then:

Y �B X if and only if T (Y ) w T (X) :

Proof We omit it, because it is similar to the proof of Theorem 1. �

In order to show that S(X; P ) has lattice structure with respect to the partial orders

�S and �B; we de�ne the following subset of �xed points of �:

T =fT (Y ) : Y 2 S(X; P )g

Lemma 2 Let (X; P ) be a matching in networks market where the pro�le of preferences

P 2 R. Then, T has lattice structure with respect to the partial order w :
Proof Given T (X); T (Y ) 2 T . Since the set of �xed points of �; FP (�); has lattice
structure with respect to w; the least upper bound (l.u.b.) and greatest lower bound

(g.l.b.) between T (X) and T (Y ) exist. Let (U1; U2) 2 FP (�) and (L1; L2) 2 FP (�) be
such l.u.b and g.l.b.in the set FP (�) respectively.

i) The �xed point (U1; U2) 2 FP (�) is the l.u.b between T (X) and T (Y ) with respect to
w in the set T :

In fact, since (U1; U2) is the l.u.b. between T (X) and T (Y ) with respect to w in the set

17



FP (�); we have (U1; U2) w T (X) and (U1; U2) w T (Y ). It follows, from Theorem 1, that

X �S U and Y �S U . Thus, T (U) w T (X) and T (U) w T (Y ). Then T (U) is an upper
bound between T (X) and T (Y ) with respect to w. It remains to show that T (U) is the
least of such bounds. Given T (Z) 2 T such that T (Z) w T (X) and T (Z) w T (Y ), we have
to prove that T (Z) w T (U).
Because (U1; U2) is the l.u.b. between T (X) and T (Y ) with respect to w in the set FP (�)
and T (Z) 2 FP (�), it follows that T (Z) w (U1; U2): Then, U �S Z, and consequently

T (Z) w T (U) according to Theorem 1: Then T (U) is the g.l.b. between T (X) and T (Y )

with respect to w in the set T .

ii) The �xed point (L1; L2) 2 FP (�) is the g.l.b between T (X) and T (Y ) with respect to
w in the set T :

We omit the proof of this case because it is similar to the case i): �
By combining our results (Theorem 1 and 2), we can exhibit the natural counterpoisition

of interests between purchases and sales. When comparing two stable allocations, if all �rms

weakly improve their contracts as sellers, then all �rms weakly get worse their contracts as

buyers and vice versa. In other words, if (X; P ) is a matching in networks market where

the pro�le of preferences P 2 R, then for every pair of stable allocations X and Y we have

X �S Y , Y �B X:

Finally, from Theorem 1 and Theorem 2 it follows that the set of stable allocations has

dual lattice structures:

Theorem 3 Let (X; P ) be a matching in networks market where the pro�le of preferences

P 2 R. Then, (S(X; P );�S) and (S(X; P );�B) are lattices on S(X; P ):

Proof GivenX; Y 2 S(X; P ), we have Y �S X if and only if T (X) w T (Y ) according to
Theorem 1: Then, the lattice structure of S(X; P ) with respect to�S follows immediately

from the lattice structure of T with respect to w; which was proved in Lemma 2. Similarly
we prove that (S(X; P );�B) is a lattice on S(X; P ): �
As a complement to our work, we claim that the matching in networks model that

we consider here, where all the �rms have preferences satisfying full substitutability and

regularity, strictly subsumes the many-to-many matching models studied by Klaus and

Markus (2009) and Hat�eld and Kominers (2016), but these are not equivalent. In fact, the

markets that we consider here are not equivalent to the associated matching with contracts

markets obtained by splitting each mixed �rm in a seller and a buyer. We prove this claim

through the next example.
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Example 3 Let (X; P ) be a matching in networks market where, X = fx; y; w; zg is the
set of all existent contracts; F = ff1; f2; f3; f4; f5g is the set of �rms and P is their pro�le
of preferences:

�f1 : fxg �f1 ? �f4 : fw; yg �f4 fz; yg �f4 ?
�f2 : fwg �f2 ? �f5 : fyg �f5 ?
�f3 : fx; zg �f3 ?

Observe thatXf1
S = fxg;X

f1
B = ?;X

f2
S = fwg;X

f2
B = ?;X

f3
S = fzg;X

f3
B = fxg;X

f4
S = fyg;

Xf4
B = fw; zg; X

f5
S = ? and X

f5
B = fyg.

The associated matching market with contracts obtained by splitting each mixed �rm in a

seller and a buyer is (X; P 0) were both opposite sides of the market are the set of sellers

FS =
�
f1;f2; f

S
3 ; f

S
4

	
and the set of buyers FB =

�
fB3 ; f

B
4 ; f5

	
; and the pro�le of preferences

P 0 is described below.

�0f1 : fxg �0f1 ? �0
fB3
: fxg �0

fB3
?

�0f2 : fwg �0f2 ? �0
fB4
: fwg �0

fB4
fzg �0

fB4
?

�0
fS3
: fzg �0

fS3
? �0f5 : fyg �0f5 ?

�0
fS4
: fyg �0

fS4
?

In this market, the allocation fw; yg is not stable in (X; P 0) because it is blocked by the
contract x 2 X. Moreover, the allocation fw; x; yg is stable in (X; P 0), but it is not even
individually rational in (X; P ): �
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