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Abstract: Matching models with contracts have been extensively studied in the
last decade as a generalization of the classical matching theory. Matching in
networks is an even more general model where firms trade goods via bilateral
contracts as well as supply chain matching. In previous literature on this model,
it was shown that a natural substitutability condition characterizes the maximal
domain of firm preferences for which the existence of stable allocations is guar-
anteed. Moreover, it was argued that these conditions are sufficient to obtain a
suitable lattice structure of the set of all stable allocations. In this paper, we
exhibit an inconsistency in the last point through an example, and introduce
an additional condition over firm preferences in order to recover an appropriate

lattice structure.
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1 Introduction

Hatfield and Milgrom (2005) presented an unified framework of many-to-one matching with
contracts, which includes the two-sided matching and package auction models as well as
labor markets model of Kelso and Crawford (1982) as special cases. Later, some general-

ization to many-to-many matching models with contracts were considered, for instance, in
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Klaus and Markus (2009) and Hatfield and Kominers (2010). Several results were gener-
alized from the classical matching theory (without contracts) to matching with contracts,
including the existence of stable allocations and lattice structure of the set of stable out-
comes under substitutability conditions.

Hatfield and Kominers (2012) introduced a many-to-many matching model in networks,
which generalizes the above-mentioned matching models with contracts. In this model,
each firm is assigned to other firms via bilateral contracts which specify their roles of buyer
or seller, and the terms of the exchange. In general, there is not a clear separation between
two sides of the market: a firm can either be the seller or the buyer in different contracts.
This model can describe, as example, an industrial process involving a variety of agents
such that raw material suppliers, manufacturers, distributors, traders, consumers, etc.

Hatfield and Kominers (2012) considered two conditions, acyclicity and full substi-
tutability, and shown that in the presence of them, the set of stable allocations is non-empty.
Moreover, they proved that the existence of stable allocations cannot be guaranteed if either
of both conditions is violated. Acyclicity means that no firm may both buy from and sell
to another firm, directly or through intermediaries; and full substitutability is a natural
generalization the substitutability concepts preexisting in the matching literature.

In order to fully generalize the key results of classical matching theory for the matching
model in networks with preferences satisfying acyclicity and full substitutability, they stated
a correspondence between the set of stable allocations and the set of fixed points of an
isotone operator, which has a lattice structure according to Tarski’s fixed point theorem.
Nevertheless, this correspondence is insufficient to obtain a suitable lattice structure for
the set of stable allocations because it is not bijective. We prove the last assertion through
an example where acyclicity and full substitutability are fulfilled. In this example, when
considering each of both binary relations over the set of stable allocations introduced in
Hatfield and Kominers (2012), the respective optimal stable allocations are not unique and
the opposition of interest results does not hold. The root of the problem lies in the binary
relations, which follows from the preferences of the firms which act exclusively as seller or
exclusively as buyer, overlooking the preferences of the remaining firms.

Finally, we introduce new partial orders which extend Blair “s partial orders to the cur-
rent framework and take into account all firms’ preferences. Then, we define an additional
restriction over the preferences, regularity, and prove that the set of stable allocations has
lattice structure with respect to the partial orders introduced by us if the firms’ preferences

satisfy acyclicity, full substitutability and regularity. Regularity states that the preferences



of a firm over the sets of contracts where she acts as a seller remain unchanged before mod-
ifications of the set of contracts where she acts as a buyer, and vice versa. The matching
model in networks with preferences satisfying acyclicity, full substitutability, and regularity
that we study here, strictly contains the many-to-many matching model with contracts.
The paper is organized as follows. In Section 2 we describe the model and define
additional properties necessary to prove our results. Moreover, we present the example

which we referred to earlier. In Section 3 we present and show the main results of this

paper.

2 Preliminaries results

Following Hatfield and Kominers (2012), we described the Matching Market in Networks
as follows. There is a finite set F' of firms, and a finite set X of contracts. We assume that
each contract z € X is bilateral, so that it associates only one buyer xp € F' with only
one seller g € F. Each firm f can sign more than one contract, including several different
contracts with any other firm. A firm can act as seller in some contracts, and as buyer in
others.

For every subset of contracts ¥ C X and every firm f € F, we denote the subset of

contracts in Y associated with firm f as
Yi={zeY:fe{rpus}},

and the subsets of contracts contained in Y where f € F' acts as buyer or as seller, respec-

tively, as

Yi={zeY:f=up}
and

Yi={zeY:f=ug}

Two-sided matching markets with contracts can be regarded as special cases of matching
markets in networks where either Xé =g or X, = & for every f € F.

We assume that X is acyclic, i.e., there does not exit a set of contracts

{o', . 2N} C X
1 _ .2 N-1_ N N _ 1
such that xp = 2%, ..., 23~ =29, x5 = Tg.



Observe that if the set of contract X is acyclic, then there exist at least one f € F' such
that Xé = @ and one f’ € F such that Xé = @. We call those agents exclusive buyers
and exclusive sellers respectively. Many exclusive sellers and exclusive buyers may exist.
We call mixed firms to those f € F such that X]; # & and Xé #* .

Each agent f € I has a reflexive, antisymmetric, transitive and complete preference
relation = over the power set of X/.

A profile of preferences P = ((>f)er)is a set consisting of one preference relation per
agent. A specific matching in networks market is denoted by (X, P) since it is completely
determined by the set of all existing contracts X and the profile of preferences P. We denote
P the set of all profiles of preferences.

Given Y C X and f € F, the choice set of f from Y is the best subset of Y} according
to =¢ . Formally,

CY(Y) = max v’

~f
Then, the rejected set of f from Y is

RI(Y)=Y! —C/(Y).

Moreover, the choice set of f as a buyer when f has access to the contractsin Y C X

for which f is a buyer, and to the contracts in Z C X for which f is a seller, is defined as
Ly | 2) = {xeCf (Yguzg) :xB:f}.

Also, we denote
Cp(Y | 2)= Ly | 2).
fer
Analogously, the choice set of f as a seller when f has access to the contracts in
Y C X for which f is a buyer, and to the contracts in Z C X for which f is a seller, is
defined as
Clz|y) = {azECf (Yguzg) :xS:f}.
Also, we denote
Cs(z|v)=Jclz|v).
fer
Finally, the buyer-rejected and seller-rejected sets are defined as

RL(Y | 2) =Y} — CL(Y | Z) and RUZ|Y)= 2L~ CL(Z|Y)

respectively.



Definition 1 Given a matching in networks market (X, P), an allocation is a set of
contracts Y C X.

We are particularly interested in the study of some sets of contracts which play a central

role in the analysis of matching models: the stable allocations.

Definition 2 An allocation Y is stable if it is:

i) Individually rational (IR):Vf € F, C/(Y) =Y/,

i) Unblocked: There does not exist a non empty set Z €Y such that Z¥ C CH(Y U Z), for
every f.

Let S(X, P) be the set of all stable allocations in the market (X, P).

Hatfield and Kominers (2012) introduced the full substitutability condition as an ex-
tension of the classical substitutability. Roughly speaking, substitutability means that the
agents do not consider the contracts as complementary. In the framework of matching in
networks, the lack of complementarity between two contracts is analyzed in different ways,
depending on the role played by the agent in both contracts.

When the agent plays the same role in both contracts:

Definition 3 The preferences of f € F are same-side substitutable (sss) if for all
Y'CYCXand Z' CZ CX,

RL(YY'| Z) CRL(Y | Z) and RL(Z'|Y)C RL(Z|Y).

Observe that the last condition can be rewritten as
CLY | Z)nY' CCLY' | Z) and CL(Z | Y)NZ' C CL(Z' | Y).
When the agent plays different roles in both contracts:

Definition 4 The preferences of f € F are cross-side complementary (csc) if for all
Y'CYCXand Z' CZ CX,

RL(YY | Z)CRL(Y | Z') and RL(Z|Y)C RL(Z|Y").



Observe that the last condition can be rewritten as
CLY | 2) S Ch(y | 2) and CL(Z|Y") € CYZ|Y).
A preferences f € F is fully substitutable if satisfies both sss and csc.

The next properties follow fom the previous definitions. For every f € F' and every
Y, Z,ACX:
(P1) CL(Y | Z) C ACY implies CL(A| Z) = CL(Y | Z);and CL(Y | Z) CACY
implies CL(A | Z) = CL(Y | Z).
(P2) CL(CL(Y | 2) | Z) = C(v | 2); and CL(CL(Y | 2) | 2) = CL(V | 2).
Moreover, if f’s preferences satisfy sss, we have
(P3) CLIYUA|Z)NACCLA| Z); and CL(YUA | Z)NAC CL(A] Z)
(P4) CL(YUA | Z) = CL(CL(Y | Z)UA | Z); and CL(YUA | Z) = CL(CL(y | Z2)uA | 2).

Hatfield and Kominers (2012) define the following two binary relations over the set of

stable allocations: given two stable allocations Y and Y”:
Y =Y’ <Y, = Y/forall f € F such that X}, = @

and
Y =pY' & Y =; Y} forall feF such that X, =2

Observe that such binary relations only care of firms f that are either exclusive sellers or
exclusive buyers.

A stable allocation Y is called seller-optimal if Y =g Y’ for all stable allocation Y’
and buyer-optimal if Y =5 Y’ for all stable allocation Y’

Hatfield and Kominers (2012) prove that the set of stable allocations is non-empty if the
set of contract is acyclic and all the agents have full substitutable preferences. In order to
do that, they consider the fixed points of an isotone operator and show that each of them
corresponds to a stable allocation. The existence of such fixed points (and the subsequent
existence of stable allocations) is guaranteed by Tarski’s fixed point theorem. Some details
are given below.

Consider the following binary relation, JJ, over the set of ordered pairs of allocations
2X x 2% .

(Y1 Y?) 3 (X', X?) if and only if (X' C Y'and Y? C X?)
for every X!, X2 Y Y2 C X. Moreover,

(Y1 Y?) 3 (X' X?) if and only if (Y',Y?) 2 (X', X?)and X' ¢ Y' or Y? ¢ X2
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Let ¢ : 2% x 2% — 2% x 2% be the operator defined as ¢ (X!, X?) = (¢5 (X!, X?), dg (X!, X?))
for every (X', X?) € 2% x 2% where

95 (X', X?) =X — Rg(X*| X)

and
¢s (X', X?) =X — Rp(X" | X?).

Because the operator ¢ is isotone with respect to partial order -, Tarski’s fixed point the-
orem guarantees that the set of fixed points of ¢, F'P(¢), is non-empty and that (F'P(¢),J)
has a lattice structure.

Remark 1 Let (X', X?) be a fixed point of ¢. Because X! = ¢ (X!, X?) = X — Rg(X? |
X1) and Rg(X? | X') C X2 then X'U X? =X.

Given (X', X?) a fixed point of ¢. The intersection of its components, X' N X2, is a
stable allocation. This fact imply that the set of stable allocations is non-empty. Moreover,
given a stable allocation Y, there exists at least one fixed point of ¢, (Y1, Y?), such that
Y = YN Y?2 However, this correspondence between the set of all fixed points of ¢ and
the set of stable allocations is not necessarily bijective as Hatfield and Kominers (2012)

assume’. We show this fact through the next example.

Example 1 Consider the market (X, P) where X = {v,w,z,y} is the set of contracts,
F ={f1, f2, f3} is the the set of firms, and the profile of preferences P is defined as follows:
nt {v}=p {w} - @
~fa' {w’x} ~ f2 {U7$} " f2 {way} ~ f2 {Uay} =5 9

~ fa* {:C} ~ f3 {y} =t D
The following graph illustrates the fact that X is acyclic:

v T
— —
f fa f3
— —
w Yy

Observe that X = {v,w}, X = {z,y}, XL = @, XJ} = @, X2 = {v,w} and X =

{z,y}.

It can be verified that each firm f has fully substitutable preferences and that Y = {w, 2}

LA similar statement was made by Hatfield and Milgrom (2005), for the models of Matching Markets
with Contracts. Pepa Risma (2016) has shown that this statement is false.



is a stable allocation.
Let Y! = X and Y? = {w, z}. Then,

¢B(Y17Y2) =X-o0=X

and
¢s(Y,V?) =X — {y, v} = {w,z}.
So, # (Y1, Y?) = (g5 (YL, Y?), 0 (YY) = (X {w,2}) = (Y, Y?), ie, (Y, V?) is a fix
point of ¢. Moreover,
Yiny?=Y.

Now, consider v = {w, z,v} and Y’ = {w, z,y}. Then,
—1 —2 —1
oYY ) =X —{y} ={w,z,v} =Y

and
—1 —2 2
oY, V) =X—{v} ={w,z,y} =Y".
—1 —2 —1 —2 —1 —2 1 =2, . sl 2.
Consequently, ¢(V',Y") = (¢B(Y Y, 0V, Y )) = V", 7%, ie, (V',7) is another
fix point of ¢. Observe that
Y'inY?=y =Y nY"

Therefore, (Y, Y?) and (71,72) are two different fixed points of ¢ corresponding to the

same stable allocation {w, z}. O
Hatfield and Kominers (2012), in page 187, state:

"We demonstrate that fully substitutable preferences are sufficient to guarantee the exis-
tence of a lattice of stable allocations when the contract set is acyclic, and for the standard

opposition of interest results to hold."

This quote suggests that, if the of contracts are acyclic and each firm has fully substi-
tutable preferences, the set of all stable allocations has a lattice structure with respect to
=5 and = p, that there is opposition of interests, and consequently, the existence of unique
seller-optimal and buyer-optimal stable allocations are guaranteed.

This approach is inaccurate. In fact, the binary relations =g and >p are not partial
orders (they are not antisymmetric), contradicting the definition of lattice and entailing

undesirable consequences, as we illustrate through the next example.



Example 1 (continued) The set of stable allocations is

S<X7 P) = {{U,CL‘}, {Uay}a {w,x}{w,y}}.

In fact, let Y be a stable set of contracts. Since Y is I R:

i) {o,0} €,

i) {y, 2} 2 Y.

Because Y is unblocked, then we have:

iii) either v € Y or w € Y, otherwise (f1, f2) is a blocking pair.

iv) either z € Y or y € Y, otherwise (f2, f3) is a blocking pair.

Thus S(X, P) = {{v,z},{v,y},{w, x},{w,y}} . Observe that both {v,z} and {v,y} are
both seller-optimal stable allocations according to =g. Similarly, {v, 2} and {w, z} are both
buyer-optimal stable allocations according to > p.

Moreover, the opposition of interest results does not hold because {v,y} =g {w, z} whereas
{w,z} =g {v,y} fails. O

3 Structure of the Set of stable Allocations

As we observed previously, one of the reasons why the binary relations »g and >pg fail to
extend the classic results on the structure of set of stable allocations is that they only care
of firms f that are either exclusive sellers or exclusive buyers. In this section, we introduce
two partial orders over the set of stable allocations which consider the preferences of all the
firms in their roles of seller and buyer respectively.

We define > and >p as follows:

Definition 5 Given two stable allocations Y and Z,
Y>>SZ<:>CS(YUZ|YUZ):Y

and
Y >pZ<Cg(YUZ|YUZ)=Y.

Consider the particular market introduced in Example 1. Observe that our partial
orders recover the lattice structure of the set of stable allocation and the existence of seller

and buyer optimal allocations



That is, according to >g¢ we have:

{v,z}
{v,y} {w, z}
{w, y}

and according to >p we have:

{w, y}

{v,y} {w, z}
AN /
{v,z}

Our findings may not be true in general, as we shows in the next example where acyclic-
ity and full substitutability are fulfilled but the set of all stable contracts has not lattice
structure with respect to >g or >p.

Example 2  Consider the market (X, P) where X = {v,w,x,y} is the set of contracts,
F ={f1, f2, f3} is the the set of firms, and the profile of preferences P is defined as follows:
—nt v} g {w} -5 @
=p Aw zyt - {w 2 =g {w,yy g {0, 2} -5 {0, 2,0) -5 {o, 4} -5 2

~fst {ZE} ~fs {y} s 9
The following graph illustrates the fact that X is acyclic:

v X
— —
bEl J2 I3
— —
w y

In fact, Xél = {v,w}, X? = {z,y}, X[} = 2, Xg =g, Xé? = {v,w} and X% = {z,y}.
Observe that all the firms have fully substitutable preferences and that f; has not regular
preferences.

The complete set of stable allocations is S(X, P) = {{v, 2}, {v,y}, {w,y}}. By considering
the stable allocations A = {v,z} and B = {w, y}, we obtain Cs (AU B | AU B) = {v,z,y}.
So, neither A > B nor B >g A are met. Consequently, S(X, P) has not lattice structure

with respect to >g because it is a set of cardinality three and at least two of its elements



are not comparable.
Let D = {v,y}, then AUD = {v,z,y}, BUD = {v,w,y},

Cs(AUD|AUuD)=U;{z € CH"(AUD) 125 = f;} ={v,2} = A

and
Cs(DUB|DUB)=U;{z € C/"(BUD):z5=fi} ={v,w,y}

So, A>s D, A and B are incomparable, B and D are incomparable. [l

Below, we introduce an additional restriction over the preferences, regularity, under
which the set of all stable allocations will be proved to have lattice structure with respect
to both partial orders >¢ and >pg, assuming that the set of contracts is acyclic and all
firms have full substitutable preferences. We will also show that such lattices are dual. This
fact manifests the foreseeable opposition of interests involved between sales and purchases.
Moreover, we will see that our partial orders extend to this framework the well-know in
matching theory Blair ‘s partial orders, which is a desirable property.

We say that a firm has regular preferences if she keeps constant the preferences over her

contracts as seller when varying her contracts as buyer, and vice versa. Formally,

Definition 6 The preferences of f € F' are regular if for all X,Y C Xg and Z,W C Xé
we have:

i)YUZ =y XUZ impliesY UZ' = X UZ" forall Z' C Xé whenever X # &.

W) YUZ = YUW impliesY' UZ = Y'UW for allY' C Xé whenever W # &.

We will denote R the set of all profiles of preferences satisfying full substitutability and
reqularity for all firm f.

Following Hatfield and Kominers (2012), we define sequentially a function 7" : S(X, P) —
FP(6).

Let Z be a stable allocation.
Sequence to define 7' (7) : Set

and

Z'n) = {ze(X=2Z°n-1)):ap=fu}UZ (n—1) (1)
7% (n) = {xexfn;xeRgn({x}umZl(n))}u22(n—1>,

10



forn=1,2,..., N = |F|. Then define
zZ' = ZY(N), Z* = Z*(N)

and
T(Z)=(Z",7%.

Observe that
Z=7'0)Ccz'(1)Cc..CZ'(N)=2"

and
Z=7*0)CZ*(1)C..CZ*(N)= 2%

Hatfield and Kominers (2012) show that for every Z € S(X,P), T(Z) = (Z',Z?) is a
fixed point of ¢ such that Z' N Z? = Z whenever X is acyclic and the agents have full

substitutable preferences. Therefore, T" is an inyective function. Moreover, as we will show
later, (T'(S(X, P)),3) is a sub lattice of (FP(¢),3).

Lemmal IfY >g¢ X, then X?(n+1)—X?(n) CY?(n+1)foreveryn =0,..., N—1.
Proof Given n € {0,.., N —1}. Consider the following two cases:
a) Xg"“ = g.
Givenz € X2 (n+1)—X2(n), since X' = @ wehavex € RI ({2} UX | XY (n+1)) =
Rl ({2} | X' (n+1)). Consequently, C+1 ({2} U X* (n+ 1)) = A forsome A C [X! (n+ 1)]] .
Thus, AU@ =y, AU{z}.
Since f,41 has regular preferences, then ZU @ =, . Z U {x} for all Z C X/, Therefore,
ze R ({2} UY | Y (n+1)),ie. 2 €Y2(n+1).
) X #£ 2.
Let x ¢ Y2 (n+ 1), we will show that z ¢ X% (n+1) — X2 (n).
Assume that x € X2 (n+1)—X? (n). Thenxg = f11,2 ¢ X and z ¢ Rf;”“ {z}UY | Y (n+1)).

Because Y! (n+ 1) C Y! and f, 1 has preferences satisfying csc, we have
ze ot ({a}uy | YY), (2)
Denote Z := C/n+1 <(Y1)g’+1 U{z} U Y]g"‘“) , then z € Zg"“ and
Ziy zltt = 2 U A (3)
forall AC [{z} U Y}g”“ with A # .

11



Because X is individually rational and X §"+1 # &, we have that Cg"“ (X | X) #
@. Since f,41 has fully sustitutable preferences, it follows that C’g”“ (XUY | XUY) =
Ybf"“ # &. Moreover, by csc

C (YUY | XUY) £ 2.

Denote W := C/=1 ([X UYIS+ U [{z} UY]E).
Since Wgnﬂ C [{x} U Y]£n+1 and Wgn+1 £, (3) implics that

ZE 0zl =y L 2k oWl
Then, because f,.; has regular preferences,
Witz =, W oW
Since Zg”“ C {z}u Y]f;”“ , by definition of W, we have
W oWl =, L Wt oz
Thus, Wi UW+ = Wi+ Uz, That is,
wi =z = e (v xuy).

Therefore,
T € C’g”“ ({:B} U st"“ | XU Y) :

Replacing,

Ol ({x} UYF+ | XU Y) = ol ({x} Ul (XUY | XUY) | XU Y> .
By (P2), we have

ol ({x}ucgn“ (XUY | XUY)] XUY) — I (2} UXUY | XUY)
and because the preferences of f,, 1 satisfy sss,

reC ({zyuX | XUY).
Define Q := C/n+1 ([X UYE+H U{z} U X]é”“) , observe that = € Q*', and
5TUQET T QFTUA, (4)

12



for all A C [{z}U X,

Because X is individually rational, X f;”“ = C’f;”“ (X | X). Since, the preferences of agent
fn+1is csc, C’g”“ (X | X' (n+1)) = Xg”“. Which imply that Cg”“ {z}UX | X (n+1)) #
J.

Denote M := Cfati ([Xl (n+ 1))+ U [{z}U X]’;"“) . Since M # @, then

Mém_l U Mgnﬂ zfn+1 ]\4}5;%_1 UE (5)

for all £ C [{z} U X]é"“ . Especially

M£n+1 U M§n+1 t Mé’n«kl U Qéﬂ«kl

fn+1

Since @ # Mg"“ C {z}u X]J;”“,and (4)

Qp UQE™ mp, QT U MET
because f, .1 has regular preferences, we obtain

ME UQE =y M UM

Which implies that M ]J;"“ UM g"“ =M ]J;”“ U Qé"“, and consequently Mgn“ = é"“,
Therefore,
xe M =0 ({a}UX | X! (n+1))

and
r¢ R ({a}UX | X (n+1)).

By definition of X2, we have that x ¢ X? (n + 1) — X? (n), a contradiction. This concludes
the proof. 0

The following theorem shows an equivalence between the partial order J, defined on
the set of fix point of ¢, and the partial order > g, defined over the set of stable allocations.

Theorem 1 Let (X, P) be a matching in networks market where the profile of preferences
P eR . Let X and Y be stable allocations. Then:

Y >¢Xifand only if T(X) JT(Y)

13



Proof Let T(X) = (X', X?) and T(Y) = (Y',Y?) be two fixed points of ¢ such that
X'NX?2=XandY'NY2=Y.
<) We have to show that Y >g¢ X, i.e.,

CH(XUuY | XuY)=Y/

for all f € F.
Assuming that 7' (X) 3 T (Y), that is, Y C X! and X? C Y2 We consider two cases
separately:
i) Xi=@and Y] = 2.
Clearly CL (X UY | X UY) = @ = YZ, and the result follows.
i) XL # @ or Y # 2.
Since (Y1,Y?) is a fixed point of ¢ such that Y'! NY2 =Y, Y! = ¢5 (Y, Y?) and Y? =
s (Y1, Y?2), then
Y=Y'nY?’=[X-Rs(Y?|Y)|NY*=
= [(XNY?) —Rs (Y?|Y)].
Because X NY? =Y? and Rs (Y2 |Y') =Y? — Cs(Y?|Y?). Then, Y = Cs (Y2 | Y1),
Thus,
vi=cl(y?*|y").

Because C (Y2 | V') C X UY C Y2, using (P1) we obtain

Yi=Ci(Y?| YY) =CL(XUuY |YY).

Since

chxuy |y ={wec (W), u(xuN) as =1} =vd
then, there exists Z C (Y1)}, such that
c! ((X uY);u (Yl)@ = ZuY{
Consequently, for all A C (X U Y)é we have

ZUYS = ZUA (6)

14



Claim 1 C{(XUY |XUY)+#w@.
Proof Assume that X g # &. Since X is individually rational, we have

Xi=cl(x|x).
Because the preference of firm f satisfies csc, then
CLX | XuY)=X[+2.

Which imply by definition that CL (X UY | X UY) # @.
If X! = @, then Y{ # @. In this case, replacing X/ by Y we obtain that C4 (X UY | X UY) #
&. This concludes the proof of Claim 1. U
Denote £ := C4L (X UY | X UY). Because E C C/ (X UY), there exist W C (X UY),,
such that

CH(XUY)=WUE. (7)

Since f has regular preferences, £ # &, and (6),
WuUY! =, WUE

Moreover, (7) implies WU E =W U st . Because xp = f for every x € W, it follows that
YJ = E. Thus,
vi=cl(xuy|xuy).

This concludes the proof of necessity.

=) Let T(X) = (X', X?) and T (V) = (Y, Y?). Assume that Y >4 X, in order to prove
that T (X) 2 T (Y) we have to show that X? C Y2 and Y! C X*.

i) X2 C Y2

Since X = X?(0) and Uszl (X? (k) — X?(k —1)) = X?, Lemma 1 implies that

X2 - X Cy? (8)

Because X NY C Y2, we only have to show that X —Y C Y2,
Givenxz € X—Y,letn € {1,..., N—1} be such that x5 = f,,. Because Cg" (XUY | XUY)=
Y{", there exists Z C (X UY)J" such that

Ch(XuY)=Y{UuZ
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Then, since f,, has regular preferences, for all Z/ C ng’ AC (XU Y)g” with A # @, we
have
ZUYI = ZUA

Let A= (st" u {.CL'}), then
20§ =g 20 (Y U{a})

for all Z C XJr.

From the "Sequence to define 77, it follows that = € R ({z} UY | Y (n)), which implies
r € Y2 (n) C Y?, and concludes the proof of 7).

ii) Y C X1

Because X NY C X!, we only have to show that Y — X C X' and Y! - Y C X'

a) Y! =Y C X' Let z € Y! — Y be such that = ¢ X'. Because X = X' U X?, by Lemma
2, then © € X?. Moreover, z € Y? because we have already proved that X? C Y?2. Thus,
r € Y'NY? =Y. This contradicts x € Y! - Y.

b) Y — X C X' We will prove that Y — X C X*'(4) for some i = 1,..., N, which implies
that Y — X C X

Let 2 € YJ" — X. Since Y >¢ X, then YJ' = C{' (X UY | X UY). Because f; is an

exclusive seller, then
r€CH{a}UX | XUY)=Cf ({2} UuX | X2(0))
Therefore = ¢ RY ({z} U X | X2(0)). By definition of T (X);
z ¢ X*(1) — X?(0).

Because zg = fi, then z ¢ X? — X. From X = X! U X2 by Lemma 1, it follows that
re X

Assume, inductivelly, that YJ* — X C X' for all i = 1,...,n — 1. Then YJ* C X" for all
i=1,..,n—1since X C X!

Consider = € YJ" — X. Because of the hypothesis, YJ" = CI' (X UY | X UY). Because

n—1
the preferences of f, satisfy full subtitutability, Y € |J YJ* € X' and (X UY)r C X,
=1

then
zeCl ({z}uXx | X
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Therefore, = ¢ R ({x} U X | X'). This and = ¢ X imply = ¢ X? according the definition
of T (X). Then, Remark 1 implies z € X
By definition

X'n+1l)={re (X=X*(n) 2= fo1} UX"(n)

which implies that

(X' (n+1)=X'(n)]] =2
Moreover
(X! (k) = X' (n)], =@

for every k > n. Thus, [X* (n)]} = [X']} . Therefore Cf ({2} UX | X1) = Cf ({2} UX | X' (n)).

So, # ¢ Rl ({z} UX | X' (n)). From z ¢ X and the definition of X?(k), it follows that
x ¢ X?. Then, Remark 1 implies that # € X!, concluding the proof. |

Now, we present a symmetric result of Theorem 1.

Theorem 2 Let (X, P) be a matching in networks market where the preference profiles
P e R . Let X and Y be stable allocations. Then:

Y >pXifandonly if T(Y) I T (X).

Proof We omit it, because it is similar to the proof of Theorem 1. [ |

In order to show that S(X, P) has lattice structure with respect to the partial orders
>¢ and >pg, we define the following subset of fixed points of ¢:

T ={T(Y):Y € $(X,P)}

Lemma 2 Let (X, P) be a matching in networks market where the profile of preferences
P € R. Then, 7 has lattice structure with respect to the partial order J .

Proof Given T(X), T(Y) € 7. Since the set of fixed points of ¢, FP(¢), has lattice
structure with respect to J, the least upper bound (L.u.b.) and greatest lower bound
(g.l.b.) between T(X) and T(Y) exist. Let (U',U?) € FP(¢) and (L', L?) € FP(¢) be
such Lu.b and g.l.b.in the set F'P(¢) respectively.

i) The fixed point (U',U?) € FP(¢) is the Lu.b between T(X) and T(Y) with respect to
1 1in the set 7 .

In fact, since (U',U?) is the Lu.b. between T'(X) and T'(Y) with respect to 3 in the set

17



FP(¢), we have (U',U?) 3 T(X) and (U*',U?) 3 T(Y). It follows, from Theorem 1, that
X >»sgUand Y >g U. Thus, T'(U) I T(X) and T(U) 3 T(Y). Then T'(U) is an upper
bound between T'(X) and 7'(Y) with respect to J. It remains to show that 7'(U) is the
least of such bounds. Given T'(Z) € 7 such that 7(Z) J T(X) and T(Z) 3 T(Y), we have
to prove that T'(Z) J T'(U).

Because (U!, U?) is the l.u.b. between T'(X) and T(Y) with respect to J in the set FP(¢)
and T(Z) € FP(¢), it follows that T(Z) 3 (U',U?). Then, U >g Z, and consequently
T(Z) 3 T(U) according to Theorem 1. Then T'(U) is the g.l.b. between T(X) and T'(Y))
with respect to J in the set 7 .

ii) The fixed point (L', L?) € FP(¢) is the g.1.b between T(X) and T'(Y) with respect to
1 1in the set 7 .

We omit the proof of this case because it is similar to the case 7). [

By combining our results (Theorem 1 and 2), we can exhibit the natural counterpoisition
of interests between purchases and sales. When comparing two stable allocations, if all firms
weakly improve their contracts as sellers, then all firms weakly get worse their contracts as
buyers and vice versa. In other words, if (X, P) is a matching in networks market where

the profile of preferences P € R, then for every pair of stable allocations X and Y we have
X>Y<eY >pX.

Finally, from Theorem 1 and Theorem 2 it follows that the set of stable allocations has

dual lattice structures.

Theorem 3 Let (X, P) be a matching in networks market where the profile of preferences
P € R. Then, (S(X, P),>s) and (S(X, P),>p) are lattices on S(X, P).

Proof Given X,Y € S(X, P), we have Y >>g X if and only if T (X)) 2 T (Y’) according to
Theorem 1. Then, the lattice structure of S(X, P) with respect to >g follows immediately
from the lattice structure of 7" with respect to J, which was proved in Lemma 2. Similarly
we prove that (S(X, P),>p) is a lattice on S(X, P). [ |

As a complement to our work, we claim that the matching in networks model that
we consider here, where all the firms have preferences satisfying full substitutability and
regularity, strictly subsumes the many-to-many matching models studied by Klaus and
Markus (2009) and Hatfield and Kominers (2016), but these are not equivalent. In fact, the
markets that we consider here are not equivalent to the associated matching with contracts
markets obtained by splitting each mixed firm in a seller and a buyer. We prove this claim

through the next example.
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Example 3 Let (X, P) be a matching in networks market where, X = {z,y,w, z} is the
set of all existent contracts, F' = {f1, f2, f3, f1, f5} is the set of firms and P is their profile

of preferences:

=nt Az} - @ = Awyt = {2yt - 9
 fo {’IU} = 9D  fs {y} ~fs D
gt {l‘,Z} >—f3@

Observe that X! = {z}, XI! = @, X2 = {w}, X = 2, X = {2}, XP = {2}, XL} = {y},
X = {w, 2}, X = @ and XJ7 = {y}.

The associated matching market with contracts obtained by splitting each mixed firm in a
seller and a buyer is (X, P’) were both opposite sides of the market are the set of sellers
Fg = {fl’fz, 15, ff} and the set of buyers Fg = {ff, fE, f5} ; and the profile of preferences
P’ is described below.

e x>l o >}3B: {z} >’ng @

S R () ) >—}43: {w} >—}43 {z} }}f %)
>}3S: {z} »}35 o] = {y} = @

mrpt Wk @

In this market, the allocation {w,y} is not stable in (X, P’) because it is blocked by the
contract © € X. Moreover, the allocation {w,z,y} is stable in (X, P’), but it is not even
individually rational in (X, P). O
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