# Electrónica

# Práctica Nº3 Transistores bipolares

10 de abril de 2023

# 1. Objetivos

- Analizar el funcionamiento del transistor bipolar en conmutación.
- Armar y probar un circuito de polarización por división de tensión.
- Analizar el funcionamiento de un amplificador de tensión.
- Armar y probar una fuente de corriente construida con un transistor bipolar NPN.
- Aprender a leer una hoja de datos de un transistor bipolar.

## 2. Listado de componentes e instrumentos

- Resistencias (1/4 watt): 47  $\Omega$ , 100  $\Omega$ , 470  $\Omega$ , 820  $\Omega$ , 1 k $\Omega$ , 3.3 k $\Omega$  y 10 k $\Omega$ .
- Diodos: LED y 1N4007 (dos).
- Transistor: BC547.
- Capacitores electrolíticos (25 Volt): 22  $\mu$ F (dos) y 47  $\mu$ F.
- Protoboard.
- Multímetro digital.
- Generador de funciones.
- Osciloscopio.
- Fuente de tensión de 12 Volts.

#### 3. El transistor en conmutación

• Usando el multímetro digital medir el valor de la ganancia de corriente para continua del transistor NPN BC547 (tener en cuenta la distribución de los pines B, C y E reportada en la hoja de datos):

$$\beta_{dc} =$$

Comparar este valor con el que aparece reportado en la hoja de datos.

**Nota:** En la hoja de datos a esta cantidad se la denomina  $h_{FE}$ .

• Armar el circuito de la Figura 1.

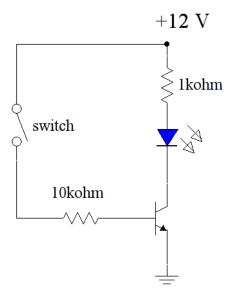



Figura 1: Transistor en conmutación.

• Verificar que abriendo y cerrando el switch se apaga y se enciende el LED. Medir la caída en directa de este diodo:

$$V_{\rm LED} =$$

• Calcular los valores de polarización de continua para este circuito cuando el switch está cerrado, y anotar los resultados en el Cuadro 1.

|          | Valor calculado | Valor medido |
|----------|-----------------|--------------|
| $V_B$    |                 |              |
| $I_B$    |                 |              |
| $I_C$    |                 |              |
| $V_E$    |                 |              |
| $V_C$    |                 |              |
| $V_{CE}$ |                 |              |

Cuadro 1: Valores de polarización de continua para el circuito de la Figura 1.

• Utilizando el multímetro digital, medir estas mismas cantidades y anotar sus valores en el Cuadro 1.

• ¿Entre qué estados trabaja el transistor cuando se abre y se cierra el switch?. Justificar la respuesta.

## 4. Polarización por división de tensión

• Armar el circuito de la Figura 2.

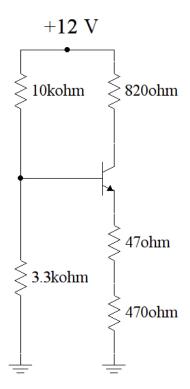



Figura 2: Polarización por división de tensión.

• Calcular y medir los valores de polarización de continua para este circuito. Anotar los resultados en el Cuadro 2.

|          | Valor calculado | Valor medido |
|----------|-----------------|--------------|
| $V_B$    |                 |              |
| $V_E$    |                 |              |
| $I_E$    |                 |              |
| $I_C$    |                 |              |
| $V_C$    |                 |              |
| $V_{CE}$ |                 |              |

Cuadro 2: Valores de polarización de continua para el circuito de la Figura 2.

• Usando la Figura 3, trazar la recta de carga e indicar tanto la posición del punto de trabajo calculado como del medido.

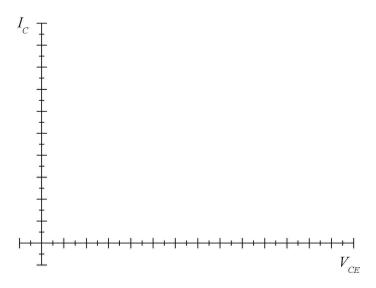



Figura 3: Recta de carga.

# 5. Amplificador de tensión

• Usando como base el circuito de la Figura 2, armar el de la Figura 4 incorporando capacitores electrolíticos tanto para acoplar las señales de entrada y de salida, como para desacoplar parte de la resistencia de emisor.

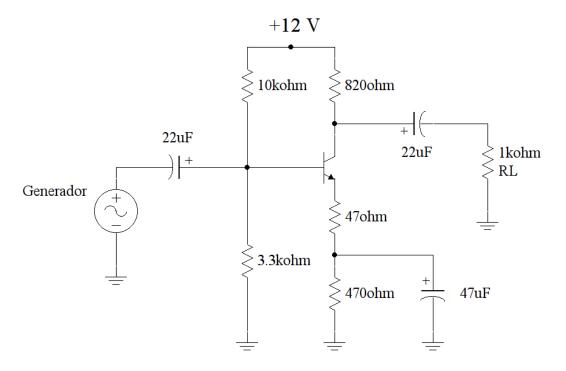



Figura 4: Amplificador de tensión.

• Usando el osciloscopio, ajustar el generador de funciones para que entregue una señal

senoidal de 10 kHz, sin offset de continua y con una amplitud cercana a los 100 mV.

• Medir y calcular la ganancia de tensión del circuito de la Figura 4:

| $A_{\text{medida}} =$ | (circuito completo) |  |  |
|-----------------------|---------------------|--|--|
| $A_{ m calculada} =$  | (circuito completo) |  |  |

**Nota:** Recordar que la ganancia de tensión se puede calcular a partir de la siguiente expresión:

$$A = \frac{R_C /\!\!/ R_L}{r_E' + R_E}$$

donde  $R_C$  y  $R_L$  son, respectivamente, las resistencias de colector y de carga,  $R_E$  es la resistencia de emisor sin desacoplar y  $r'_E = 25 (\text{mV})/I_E(\text{mA})$  es la resistencia del diodo de emisor (siendo  $I_E$  la corriente de emisor de polarización).

• Desconectando la resistencia de carga, medir y calcular nuevamente la ganancia de tensión:

| $A_{\rm medida} =$    | (sin carga) |  |  |
|-----------------------|-------------|--|--|
|                       |             |  |  |
| $A_{\rm calculada} =$ | (sin carga) |  |  |

Reconectar la resistencia de carga pero ahora eliminar el capacitor de desacoplo de emisor.
 Medir y calcular la ganancia de tensión para este circuito:

| $A_{ m medida} =$        | (sin capacitor de desacoplo) |
|--------------------------|------------------------------|
|                          |                              |
| $A_{\text{calculada}} =$ | (sin capacitor de desacoplo) |

 Desacoplar completamente la resistencia de emisor (es decir, reconectar el capacitor de desacoplo directamente al emisor del transistor). Medir y calcular la ganancia de tensión para este nuevo caso:

$$A_{
m medida} =$$
 (con resistencia de emisor desacoplada)
$$A_{
m calculada} =$$
 (con resistencia de emisor desacoplada)

Si se aumenta la amplitud del voltaje de entrada, qué le sucede a la ganancia de tensión y a la forma de onda de la señal de salida?. Justificar la respuesta.

■ Finalmente, reconectando los componentes para volver a la configuración mostrada en la Figura 4, analizar la respuesta en frecuencia del amplificador. ¿Qué le sucede a la ganancia de tensión en el rango de las bajas frecuencias?. Justificar la respuesta.

.....

#### 6. Fuente de corriente

• Armar el circuito de la Figura 5 conectando un cortocircuito como carga  $(R_L = 0)$ .

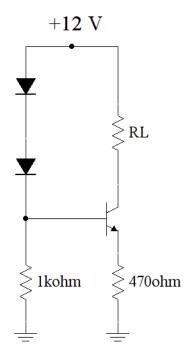



Figura 5: Fuente de corriente.

• Calcular la corriente que debería circular por la carga:

| $I_L =$ | (calculada) |
|---------|-------------|
|---------|-------------|

 $\blacksquare$  Medir la corriente de carga para los diferentes valores de  $R_L$  previstos en el Cuadro 3.

| $R_L$                  | $I_L$ (medida) |
|------------------------|----------------|
| $\Omega$               |                |
| $47~\Omega$            |                |
| $100 \Omega$           |                |
| $820 \Omega$           |                |
| $3.3~\mathrm{k}\Omega$ |                |
| $10~\mathrm{k}\Omega$  |                |

Cuadro 3: Corriente de carga medida para diferentes valores de  $R_L$ .

 Analizando los valores registrados en el Cuadro 3, explicar cómo se comporta la fuente de corriente cuando aumenta la resistencia de carga.



#### BC546/547/548/549/550

#### **Switching and Applications**

- High Voltage: BC546, V<sub>CEO</sub>=65V
  Low Noise: BC549, BC550
- Complement to BC556 ... BC560



## **NPN Epitaxial Silicon Transistor**

#### **Absolute Maximum Ratings** $T_a$ =25°C unless otherwise noted

| Symbol           | Parameter                         | Value     | Units |
|------------------|-----------------------------------|-----------|-------|
| V <sub>CBO</sub> | Collector-Base Voltage : BC546    | 80        | V     |
|                  | : BC547/550                       | 50        | V     |
|                  | : BC548/549                       | 30        | V     |
| V <sub>CEO</sub> | Collector-Emitter Voltage : BC546 | 65        | V     |
|                  | : BC547/550                       | 45        | V     |
|                  | : BC548/549                       | 30        | V     |
| V <sub>EBO</sub> | Emitter-Base Voltage : BC546/547  | 6         | V     |
|                  | : BC548/549/550                   | 5         | V     |
| I <sub>C</sub>   | Collector Current (DC)            | 100       | mA    |
| P <sub>C</sub>   | Collector Power Dissipation       | 500       | mW    |
| T <sub>J</sub>   | Junction Temperature              | 150       | °C    |
| T <sub>STG</sub> | Storage Temperature               | -65 ~ 150 | °C    |

# $\textbf{Electrical Characteristics} \ \, \textbf{T}_{a} = 25 ^{\circ} \textbf{C} \ \, \textbf{unless otherwise noted}$

| Symbol                | Parameter                            | Test Condition                                                                            | Min. | Тур.       | Max.       | Units    |
|-----------------------|--------------------------------------|-------------------------------------------------------------------------------------------|------|------------|------------|----------|
| I <sub>CBO</sub>      | Collector Cut-off Current            | $V_{CB}=30V$ , $I_{E}=0$                                                                  |      |            | 15         | nA       |
| h <sub>FE</sub>       | DC Current Gain                      | V <sub>CE</sub> =5V, I <sub>C</sub> =2mA                                                  | 110  |            | 800        |          |
| V <sub>CE</sub> (sat) | Collector-Emitter Saturation Voltage | I <sub>C</sub> =10mA, I <sub>B</sub> =0.5mA<br>I <sub>C</sub> =100mA, I <sub>B</sub> =5mA |      | 90<br>200  | 250<br>600 | mV<br>mV |
| V <sub>BE</sub> (sat) | Base-Emitter Saturation Voltage      | I <sub>C</sub> =10mA, I <sub>B</sub> =0.5mA<br>I <sub>C</sub> =100mA, I <sub>B</sub> =5mA |      | 700<br>900 |            | mV<br>mV |
| V <sub>BE</sub> (on)  | Base-Emitter On Voltage              | $V_{CE}$ =5V, $I_{C}$ =2mA<br>$V_{CE}$ =5V, $I_{C}$ =10mA                                 | 580  | 660        | 700<br>720 | mV<br>mV |
| f <sub>T</sub>        | Current Gain Bandwidth Product       | V <sub>CE</sub> =5V, I <sub>C</sub> =10mA, f=100MHz                                       |      | 300        |            | MHz      |
| C <sub>ob</sub>       | Output Capacitance                   | V <sub>CB</sub> =10V, I <sub>E</sub> =0, f=1MHz                                           |      | 3.5        | 6          | pF       |
| C <sub>ib</sub>       | Input Capacitance                    | V <sub>EB</sub> =0.5V, I <sub>C</sub> =0, f=1MHz                                          |      | 9          |            | pF       |
| NF                    | Noise Figure : BC546/547/548         | V <sub>CE</sub> =5V, I <sub>C</sub> =200μA                                                |      | 2          | 10         | dB       |
|                       | : BC549/550                          | $f=1KHz$ , $R_G=2K\Omega$                                                                 |      | 1.2        | 4          | dB       |
|                       | : BC549                              | $V_{CE}$ =5V, $I_{C}$ =200 $\mu$ A                                                        |      | 1.4        | 4          | dB       |
|                       | : BC550                              | R <sub>G</sub> =2KΩ, f=30~15000MHz                                                        |      | 1.4        | 3          | dB       |

## **h**<sub>FE</sub> Classification

| Classification  | A         | В         | С         |
|-----------------|-----------|-----------|-----------|
| h <sub>FE</sub> | 110 ~ 220 | 200 ~ 450 | 420 ~ 800 |