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Preface to the Third Edition

The second edition of Statistical Mechanics was published in 1996. The new material added at
that time focused on phase transitions, critical phenomena, and the renormalization group —
topics that had undergone vast transformations during the years following the publication of
the first edition in 1972. In 2009, R. K. Pathria (R.K.P) and the publishers agreed it was time for
a third edition to incorporate the important changes that had occurred in the field since the
publication of the second edition and invited Paul B. Beale (P.D.B.) to join as coauthor. The two
authors agreed on the scope of the additions and changes and P.D.B. wrote the first draft of
the new sections except for Appendix F which was written by R.K.P. Both authors worked very
closely together editing the drafts and finalizing this third edition.

The new topics added to this edition are:

Bose-Einstein condensation and degenerate Fermi gas behavior in ultracold atomic gases:
Sections 7.2, 8.4, 11.2.A, and 11.9. The creation of Bose-Einstein condensates in ultracold
gases during the 1990s and in degenerate Fermi gases during the 2000s led to a revolution
in atomic, molecular, and optical physics, and provided a valuable link to the quantum
behavior of condensed matter systems. Several of P.D.B.’s friends and colleagues in physics
and JILA at the University of Colorado have been leaders in this exciting new field.
Finite-size scaling behavior of Bose-Einstein condensates: Appendix F. We develop an
analytical theory for the behavior of Bose-Einstein condensates in a finite system, which
provides a rigorous justification for singling out the ground state in the calculation of the
properties of the Bose-Einstein condensate.

Thermodynamics of the early universe: Chapter 9. The sequence of thermodynamic
transitions that the universe went though shortly after the Big Bang left behind mileposts
that astrophysicists have exploited to look back into the universe’s earliest moments. Major
advances in astronomy over the past 20 years have provided a vast body of observational
data about the early evolution of the universe. These include the Hubble Space Telescope’s
deep space measurements of the expansion of the universe, the Cosmic Background
Explorer’s precise measurements of the temperature of the cosmic microwave background,
and the Wilkinson Microwave Anisotropy Probe’s mapping of the angular variations in the
cosmic microwave background. These data sets have led to precise determinations of the
age of the universe, its composition and early evolution. Coincidentally, P.D.B.’s faculty
office is located in the tower named after George Gamow, a member of the faculty at the
University of Colorado in the 1950s and 1960s and a leader in the theory of nucleosynthesis
in the early universe.

Chemical equilibrium: Section 6.6. Chemical potentials determine the conditions
necessary for chemical equilibrium. This is an important topic in its own right, but also
plays a critical role in our discussion of the thermodynamics of the early universe in
Chapter 9.

Xiii
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Monte Carlo and molecular dynamics simulations: Chapter 16. Computer simulations have
become an important tool in modern statistical mechanics. We provide here a brief
introduction to Monte Carlo and molecular dynamics techniques and algorithms.
Correlation functions and scattering: Section 10.7. Correlation functions are central to the
understanding of thermodynamic phases, phase transitions, and critical phenomena. The
differences between thermodynamic phases are often most conspicuous in the behavior
of correlation functions and the closely related static structure factors. We have collected
discussions from the second edition into one place and added new material.
Fluctuation—dissipation theorem and the dynamical structure factor: Sections 15.3.A.,
15.6.A, and 15.6.B. The fluctuation—dissipation theorem describes the relation between
natural equilibrium thermodynamic fluctuations in a system and the response of the
system to small disturbances from equilibrium, and it is one of the cornerstones of
nonequilibrium statistical mechanics. We have expanded the discussion of the
fluctuation—dissipation theorem to include a derivation of the key results from linear
response theory, a discussion of the dynamical structure factor, and analysis of the
Brownian motion of harmonic oscillators that provides useful practical examples.

Phase equilibrium and the Clausius—Clapeyron equation: Sections 4.6 and 4.7. Much of the
text is devoted to using statistical mechanics methods to determine the properties of
thermodynamic phases and phase transitions. This brief overview of phase equilibrium
and the structure of phase diagrams lays the groundwork for later discussions.

Exact solutions of one-dimensional fluid models: Section 13.1. One-dimensional fluid
models with short-range interactions do not exhibit phase transitions but they do display
short-range correlations and other behaviors typical of dense fluids.

Exact solution of the two-dimensional Ising model on a finite lattice: Section 13.4.A. This
solution entails an exact counting of the microstates of the microcanonical ensemble and
provides analytical results for the energy distribution, internal energy, and heat capacity of
the system. This solution also describes the finite-size scaling behavior of the Ising model
near the transition point and provides an exact framework that can be

used to test Monte Carlo methods.

Summary of thermodynamic assemblies and associated statistical ensembles: Appendix H.
We provide a summary of thermodynamic relations and their connections to statistical
mechanical ensembles. Most of this information can be found elsewhere in the text, but we
thought it would be helpful to provide a rundown of these important connections in one
place.

Pseudorandom number generators: Appendix I. Pseudorandom number generators are
indispensable in computer simulations. We provide simple algorithms for generating
uniform and Gaussian pseudorandom numbers and discuss their properties.

Dozens of new homework problems.

The remainder of the text is largely unchanged.

The completion of this task has left us indebted to many a friend and colleague. R.K.P. has

already expressed his indebtedness to a good number of people on two previous occasions —
in 1972 and in 1996 — so, at this time, he will simply reiterate the many words of gratitude he
has already written. In addition though, he would like to thank Paul Beale for his willingness to
be a partner in this project and for his diligence in carrying out the task at hand both arduously
and meticulously.

On his part, P.D.B. would like to thank his friends at the University of Colorado at Boulder

for the many conversations he has had with them over the years about research and pedagogy
of statistical mechanics, especially Noel Clark, Tom DeGrand, John Price, Chuck Rogers, Mike
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Dubson, and Leo Radzihovsky. He would also like to thank the faculty of the Department of
Physics for according him the honor of serving as the chair of this outstanding department.

Special thanks are also due to many friends and colleagues who have read sections of
the manuscript and have offered many valuable suggestions and corrections, especially Tom
DeGrand, Michael Shull, David Nesbitt, Jamie Nagle, Matt Glaser, Murray Holland, Leo Radzi-
hovsky, Victor Gurarie, Edmond Meyer, Matthew Grau, Andrew Sisler, Michael Foss-Feig, Allan
Franklin, Shantha deAlwis, Dmitri Reznik, and Eric Cornell.

P.D.B. would like to take this opportunity to extend his thanks and best wishes to Professor
Michael E. Fisher whose graduate statistical mechanics course at Cornell introduced him to this
elegant field. He would also like to express his gratitude to Raj Pathria for inviting him to be part
of this project, and for the fun and engaging discussions they have had during the preparation
of this new edition. Raj’s thoughtful counsel always proved to be valuable in improving the text.

P.D.B.’s greatest thanks go to Matthew, Melanie, and Erika for their love and support.

R.K.P.
P.D.B.






Preface to the Second Edition

The first edition of this book was prepared over the years 1966 to 1970 when the subject of phase
transitions was undergoing a complete overhaul. The concepts of scaling and universality had
just taken root but the renormalization group approach, which converted these concepts into
a calculational tool, was still obscure. Not surprisingly, my text of that time could not do justice
to these emerging developments. Over the intervening years I have felt increasingly conscious
of this rather serious deficiency in the text; so when the time came to prepare a new edition, my
major effort went toward correcting that deficiency.

Despite the aforementioned shortcoming, the first edition of this book has continued to
be popular over the last 20 years or so. I, therefore, decided not to tinker with it unnecessar-
ily. Nevertheless, to make room for the new material, I had to remove some sections from the
present text which, I felt, were not being used by the readers as much as the rest of the book was.
This may turn out to be a disappointment to some individuals but I trust they will understand
the logic behind it and, if need be, will go back to a copy of the first edition for reference. I, on
my part, hope that a good majority of the users will not be inconvenienced by these deletions.
As for the material retained, I have confined myself to making only editorial changes. The sub-
ject of phase transitions and critical phenomena, which has been my main focus of revision,
has been treated in three new chapters that provide a respectable coverage of the subject and
essentially bring the book up to date. These chapters, along with a collection of more than 60
homework problems, will, I believe, enhance the usefulness of the book for both students and
instructors.

The completion of this task has left me indebted to many. First of all, as mentioned in
the Preface to the first edition, I owe a considerable debt to those who have written on this
subject before and from whose writings I have benefited greatly. It is difficult to thank them
all individually; the bibliography at the end of the book is an obvious tribute to them. As for
definitive help, I am most grateful to Dr Surjit Singh who advised me expertly and assisted me
generously in the selection of the material that comprises Chapters 11 to 13 of the new text;
without his help, the final product might not have been as coherent as it now appears to be. On
the technical side, I am very thankful to Mrs. Debbie Guenther who typed the manuscript with
exceptional skill and proof read it with extreme care; her task was clearly an arduous one but
she performed it with good cheer — for which I admire her greatly.

Finally, I wish to express my heartfelt appreciation for my wife who let me devote myself
fully to this task over a rather long period of time and waited for its completion ungrudgingly.

RK.P.






Preface to the First Edition

This book has arisen out of the notes of lectures that I gave to the graduate students at
the McMaster University (1964-1965), the University of Alberta (1965-1967), the University of
Waterloo (1969-1971), and the University of Windsor (1970-1971). While the subject matter, in
its finer details, has changed considerably during the preparation of the manuscript, the style
of presentation remains the same as followed in these lectures.

Statistical mechanics is an indispensable tool for studying physical properties of matter
“in bulk” on the basis of the dynamical behavior of its “microscopic” constituents. Founded
on the well-laid principles of mathematical statistics on one hand and Hamiltonian mechanics
on the other, the formalism of statistical mechanics has proved to be of immense value to the
physics of the last 100 years. In view of the universality of its appeal, a basic knowledge of this
subject is considered essential for every student of physics, irrespective of the area(s) in which
he/she may be planning to specialize. To provide this knowledge, in a manner that brings out
the essence of the subject with due rigor but without undue pain, is the main purpose of this
work.

The fact that the dynamics of a physical system is represented by a set of quantum states
and the assertion that the thermodynamics of the system is determined by the multiplicity of
these states constitute the basis of our treatment. The fundamental connection between the
microscopic and the macroscopic descriptions of a system is uncovered by investigating the
conditions for equilibrium between two physical systems in thermodynamic contact. This is
best accomplished by working in the spirit of the quantum theory right from the beginning;
the entropy and other thermodynamic variables of the system then follow in a most natural
manner. After the formalism is developed, one may (if the situation permits) go over to the
limit of the classical statistics. This message may not be new, but here I have tried to follow it as
far as is reasonably possible in a textbook. In doing so, an attempt has been made to keep the
level of presentation fairly uniform so that the reader does not encounter fluctuations of too
wild a character.

This text is confined to the study of the equilibrium states of physical systems and is
intended to be used for a graduate course in statistical mechanics. Within these bounds, the
coverage is fairly wide and provides enough material for tailoring a good two-semester course.
The final choice always rests with the individual instructor; I, for one, regard Chapters 1 to 9
(minus a few sections from these chapters plus a few sections from Chapter 13) as the “essential
part” of such a course. The contents of Chapters 10 to 12 are relatively advanced (not necessar-
ily difficult); the choice of material out of these chapters will depend entirely on the taste of
the instructor. To facilitate the understanding of the subject, the text has been illustrated with
a large number of graphs; to assess the understanding, a large number of problems have been
included. T hope these features are found useful.
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I feel that one of the most essential aspects of teaching is to arouse the curiosity of the
students in their subject, and one of the most effective ways of doing this is to discuss with them
(in areasonable measure, of course) the circumstances that led to the emergence of the subject.
One would, therefore, like to stop occasionally to reflect upon the manner in which the various
developments really came about; at the same time, one may not like the flow of the text to be
hampered by the discontinuities arising from an intermittent addition of historical material.
Accordingly, I decided to include in this account a historical introduction to the subject which
stands separate from the main text. I trust the readers, especially the instructors, will find it of
interest.

For those who wish to continue their study of statistical mechanics beyond the confines
of this book, a fairly extensive bibliography is included. It contains a variety of references — old
as well as new, experimental as well as theoretical, technical as well as pedagogical. I hope that
this will make the book useful for a wider readership.

The completion of this task has left me indebted to many. Like most authors, I owe con-
siderable debt to those who have written on the subject before. The bibliography at the end of
the book is the most obvious tribute to them; nevertheless, I would like to mention, in particu-
lar, the works of the Ehrenfests, Fowler, Guggenheim, Schrédinger, Rushbrooke, ter Haar, Hill,
Landau and Lifshitz, Huang, and Kubo, which have been my constant reference for several years
and have influenced my understanding of the subject in a variety of ways. As for the preparation
of the text,  am indebted to Robert Teshima who drew most of the graphs and checked most of
the problems, to Ravindar Bansal, Vishwa Mittar, and Surjit Singh who went through the entire
manuscript and made several suggestions that helped me unkink the exposition at a number
of points, to Mary Annetts who typed the manuscript with exceptional patience, diligence and
care, and to Fred Hetzel, Jim Briante, and Larry Kry who provided technical help during the
preparation of the final version.

As this work progressed I felt increasingly gratified toward Professors E C. Auluck and
D. S. Kothari of the University of Delhi with whom I started my career and who initiated me
into the study of this subject, and toward Professor R. C. Majumdar who took keen interest
in my work on this and every other project that I have undertaken from time to time. I am
grateful to Dr. D. ter Haar of the University of Oxford who, as the general editor of this series,
gave valuable advice on various aspects of the preparation of the manuscript and made several
useful suggestions toward the improvement of the text. I am thankful to Professors J. W. Leech,
J. Grindlay, and A. D. Singh Nagi of the University of Waterloo for their interest and hospitality
that went a long way in making this task a pleasant one.

The final tribute must go to my wife whose cooperation and understanding, at all stages
of this project and against all odds, have been simply overwhelming.

RKP.



Historical Introduction

Statistical mechanics is a formalism that aims at explaining the physical properties of matter
in bulk on the basis of the dynamical behavior of its microscopic constituents. The scope of the
formalism is almost as unlimited as the very range of the natural phenomena, for in principle it
is applicable to matter in any state whatsoever. It has, in fact, been applied, with considerable
success, to the study of matter in the solid state, the liquid state, or the gaseous state, mat-
ter composed of several phases and/or several components, matter under extreme conditions
of density and temperature, matter in equilibrium with radiation (as, for example, in astro-
physics), matter in the form of a biological specimen, and so on. Furthermore, the formalism
of statistical mechanics enables us to investigate the nonequilibrium states of matter as well as
the equilibrium states; indeed, these investigations help us to understand the manner in which
a physical system that happens to be “out of equilibrium” at a given time ¢ approaches a “state
of equilibrium” as time passes.

In contrast with the present status of its development, the success of its applications, and
the breadth of its scope, the beginnings of statistical mechanics were rather modest. Barring
certain primitive references, such as those of Gassendi, Hooke, and so on, the real work on this
subject started with the contemplations of Bernoulli (1738), Herapath (1821), and Joule (1851)
who, in their own individual ways, attempted to lay a foundation for the so-called kinetic the-
ory of gases — a discipline that finally turned out to be the forerunner of statistical mechanics.
The pioneering work of these investigators established the fact that the pressure of a gas arose
from the motion of its molecules and could, therefore, be computed by considering the dynam-
ical influence of the molecular bombardment on the walls of the container. Thus, Bernoulli
and Herapath could show that, if temperature remained constant, the pressure P of an ordi-
nary gas was inversely proportional to the volume V of the container (Boyle’s law), and that it
was essentially independent of the shape of the container. This, of course, involved the explicit
assumption that, at a given temperature T, the (mean) speed of the molecules was independent
of both pressure and volume. Bernoulli even attempted to determine the (first-order) correc-
tion to this law, arising from the finite size of the molecules, and showed that the volume V'
appearing in the statement of the law should be replaced by (V — b), where b is the “actual”
volume of the molecules.!

Joule was the first to show that the pressure P was directly proportional to the square of
the molecular speed ¢, which he had initially assumed to be the same for all molecules. Kronig
(1856) went a step further. Introducing the “quasistatistical” assumption that, at any time t,

As is well known, this “correction” was correctly evaluated, much later, by van der Waals (1873) who showed that,
for large V, b is four times the “actual” volume of the molecules; see Problem 1.4.
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one-sixth of the molecules could be assumed to be flying in each of the six “independent”
directions, namely +x, —x, +y, —y,+z, and —z, he derived the equation

1 2
P:§nmc R 1)

where 7 is the number density of the molecules and m the molecular mass. Krénig, too,
assumed the molecular speed c to be the same for all molecules; so from (1), he inferred that
the kinetic energy of the molecules should be directly proportional to the absolute temperature
of the gas.

Kronig justified his method in these words: “The path of each molecule must be so irreg-
ular that it will defy all attempts at calculation. However, according to the laws of probability,
one could assume a completely regular motion in place of a completely irregular one!” It must,
however, be noted that it is only because of the special form of the summations appearing in the
calculation of the pressure that Kronig’s argument leads to the same result as the one following
from more refined models. In other problems, such as the ones involving diffusion, viscosity, or
heat conduction, this is no longer the case.

It was at this stage that Clausius entered the field. First of all, in 1857, he derived the
ideal-gas law under assumptions far less stringent than Kronig’s. He discarded both leading
assumptions of Kronig and showed that equation (1) was still true; of course, ¢2 now became
the mean square speed of the molecules. In a later paper (1859), Clausius introduced the con-
cept of the mean free path and thus became the first to analyze transport phenomena. It was in
these studies that he introduced the famous “Stosszahlansatz” — the hypothesis on the number
of collisions (among the molecules) — which, later on, played a prominent role in the monu-
mental work of Boltzmann.? With Clausius, the introduction of the microscopic and statistical
points of view into the physical theory was definitive, rather than speculative. Accordingly,
Maxwell, in a popular article entitled “Molecules,” written for the Encyclopedia Britannica,
referred to Clausius as the “principal founder of the kinetic theory of gases,” while Gibbs, in
his Clausius obituary notice, called him the “father of statistical mechanics.”3

The work of Clausius attracted Maxwell to the field. He made his first appearance with
the memoir “Illustrations in the dynamical theory of gases” (1860), in which he went much
farther than his predecessors by deriving his famous law of the “distribution of molecular
speeds.” Maxwell’s derivation was based on elementary principles of probability and was
clearly inspired by the Gaussian law of “distribution of random errors.” A derivation based on
the requirement that “the equilibrium distribution of molecular speeds, once acquired, should
remain invariant under molecular collisions” appeared in 1867. This led Maxwell to establish
what is known as Maxwell’s transport equation which, if skilfully used, leads to the same results
as one gets from the more fundamental equation due to Boltzmann.*

Maxwell’s contributions to the subject diminished considerably after his appointment,
in 1871, as the Cavendish Professor at Cambridge. By that time Boltzmann had already made
his first strides. In the period 1868-1871 he generalized Maxwell’s distribution law to poly-
atomic gases, also taking into account the presence of external forces, if any; this gave rise
to the famous Boltzmann factor exp(—pBe), where ¢ denotes the fofal energy of a molecule.
These investigations also led to the equipartition theorem. Boltzmann further showed that, just

2For an excellent review of this and related topics, see Ehrenfest and Ehrenfest (1912).

3For further details, refer to Montroll (1963) where an account is also given of the pioneering work of Waterston (1846,
1892).

“This equivalence has been demonstrated in Guggenheim (1960) where the coefficients of viscosity, thermal
conductivity, and diffusion of a gas of hard spheres have been calculated on the basis of Maxwell’s transport equation.
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like the original distribution of Maxwell, the generalized distribution (which we now call the
Maxwell-Boltzmann distribution) is stationary with respect to molecular collisions.

In 1872 came the celebrated H-theorem, which provided a molecular basis for the natural
tendency of physical systems to approach, and stay in, a state of equilibrium. This established
a connection between the microscopic approach (which characterizes statistical mechan-
ics) and the phenomenological approach (which characterized thermodynamics) much more
transparently than ever before; it also provided a direct method for computing the entropy
of a given physical system from purely microscopic considerations. As a corollary to the H-
theorem, Boltzmann showed that the Maxwell-Boltzmann distribution is the only distribution
that stays invariant under molecular collisions and that any other distribution, under the influ-
ence of molecular collisions, will ultimately go over to a Maxwell-Boltzmann distribution. In
1876 Boltzmann derived his famous transport equation, which, in the hands of Chapman and
Enskog (1916-1917), has proved to be an extremely powerful tool for investigating macroscopic
properties of systems in nonequilibrium states.

Things, however, proved quite harsh for Boltzmann. His H-theorem, and the consequent
irreversible behavior of physical systems, came under heavy attack, mainly from Loschmidt
(1876-1877) and Zermelo (1896). While Loschmidt wondered how the consequences of this
theorem could be reconciled with the reversible character of the basic equations of motion
of the molecules, Zermelo wondered how these consequences could be made to fit with the
quasiperiodic behavior of closed systems (which arose in view of the so-called Poincaré cycles).
Boltzmann defended himself against these attacks with all his might but, unfortunately, could
not convince his opponents of the correctness of his viewpoint. At the same time, the energeti-
cists, led by Mach and Ostwald, were criticizing the very (molecular) basis of the kinetic theory,®
while Kelvin was emphasizing the “nineteenth-century clouds hovering over the dynamical
theory of light and heat.”®

All this left Boltzmann in a state of despair and induced in him a persecution complex.”
He wroste in the introduction to the second volume of his treatise Vorlesungen iiber Gastheorie
(1898):

I am convinced that the attacks (on the kinetic theory) rest on misunderstandings and
that the role of the kinetic theory is not yet played out. In my opinion it would be a blow
to science if contemporary opposition were to cause kinetic theory to sink into the oblivion
which was the fate suffered by the wave theory of light through the authority of Newton.
I am aware of the weakness of one individual against the prevailing currents of opinion.
In order to insure that not too much will have to be rediscovered when people return to
the study of kinetic theory 1 will present the most difficult and misunderstood parts of the
subject in as clear a manner as I can.

We shall not dwell any further on the kinetic theory; we would rather move on to the
development of the more sophisticated approach known as the ensemble theory, which may in
fact be regarded as the statistical mechanics proper.® In this approach, the dynamical state of a

SThese critics were silenced by Einstein whose work on the Brownian motion (1905b) established atomic theory once
and for all.

5The first of these clouds was concerned with the mysteries of the “aether,” and was dispelled by the theory of relativ-
ity. The second was concerned with the inadequacy of the “equipartition theorem,” and was dispelled by the quantum
theory.

"Some people attribute Boltzmann’s suicide on September 5, 1906 to this cause.

8Quotation from Montroll (1963).

9For a review of the historical development of kinetic theory leading to statistical mechanics, see Brush (1957, 1958,
1961a,b, 1965-1966).
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given system, as characterized by the generalized coordinates ¢g; and the generalized momenta
pi, is represented by a phase point G(q;, p;) in a phase space of appropriate dimensionality. The
evolution of the dynamical state in time is depicted by the trajectory of the G-point in the phase
space, the “geometry” of the trajectory being governed by the equations of motion of the system
and by the nature of the physical constraints imposed on it. To develop an appropriate formal-
ism, one considers the given system along with an infinitely large number of “mental copies”
thereof; that is, an ensemble of similar systems under identical physical constraints (though, at
any time ¢, the various systems in the ensemble would differ widely in respect of their dynam-
ical states). In the phase space, then, one has a swarm of infinitely many G-points (which, at
any time ¢, are widely dispersed and, with time, move along their respective trajectories). The
fiction of a host of infinitely many, identical but independent, systems allows one to replace
certain dubious assumptions of the kinetic theory of gases by readily acceptable statements of
statistical mechanics. The explicit formulation of these statements was first given by Maxwell
(1879) who on this occasion used the word “statistico-mechanical” to describe the study of
ensembles (of gaseous systems) — though, eight years earlier, Boltzmann (1871) had already
worked with essentially the same kind of ensembles.

The most important quantity in the ensemble theory is the density function, p(q;, pi;t),
of the G-points in the phase space; a stationary distribution (3p/dt = 0) characterizes a sta-
tionary ensemble, which in tum represents a system in equilibrium. Maxwell and Boltzmann
confined their study to ensembles for which the function p depended solely on the energy E of
the system. This included the special case of ergodic systems, which were so defined that “the
undisturbed motion of such a system, if pursued for an unlimited time, would ultimately tra-
verse (the neighborhood of) each and every phase point compatible with the fixed value E of
the energy.” Consequently, the ensemble average, (f), of a physical quantity f, taken at any given
time ¢, would be the same as the long-time average, f, pertaining to any given member of the
ensemble. Now, f is the value we expect to obtain for the quantity in question when we make
an appropriate measurement on the system; the result of this measurement should, there-
fore, agree with the theoretical estimate (f). We thus acquire a recipe to bring about a direct
contact between theory and experiment. At the same time, we lay down a rational basis for a
microscopic theory of matter as an alternative to the empirical approach of thermodynamics!

A significant advance in this direction was made by Gibbs who, with his Elementary Prin-
ciples of Statistical Mechanics (1902), turned ensemble theory into a most efficient tool for the
theorist. He emphasized the use of “generalized” ensembles and developed schemes which, in
principle, enabled one to compute a complete set of thermodynamic quantities of a given sys-
tem from purely mechanical properties of its microscopic constituents.'? In its methods and
results, the work of Gibbs turned out to be much more general than any preceding treatment
of the subject; it applied to any physical system that met the simple-minded requirements
that (i) it was mechanical in structure and (ii) it obeyed Lagrange’s and Hamilton’s equa-
tions of motion. In this respect, Gibbs’s work may be considered to have accomplished for
thermodynamics as much as Maxwell’s had accomplished for electrodynamics.

These developments almost coincided with the great revolution that Planck’s work of
1900 brought into physics. As is well known, Planck’s quantum hypothesis successfully resolved
the essential mysteries of the black-body radiation — a subject where the three best-established
disciplines of the nineteenth century, namely mechanics, electrodynamics, and thermodynam-
ics, were all focused. At the same time, it uncovered both the strengths and the weaknesses
of these disciplines. It would have been surprising if statistical mechanics, which linked
thermodynamics with mechanics, could have escaped the repercussions of this revolution.

10In much the same way as Gibbs, but quite independently of him, Einstein (1902, 1903) also developed the theory of
ensembles.



Historical Introduction xxv

The subsequent work of Einstein (1905a) on the photoelectric effect and of Compton
(1923a,b) on the scattering of x-rays established, so to say, the “existence” of the quan-
tum of radiation, or the photon as we now call it.'' It was then natural for someone to
derive Planck’s radiation formula by treating black-body radiation as a gas of photons in the
same way as Maxwell had derived his law of distribution of molecular speeds for a gas of
conventional molecules. But, then, does a gas of photons differ so radically from a gas of
conventional molecules that the two laws of distribution should be so different from one
another?

The answer to this question was provided by the manner in which Planck’s formula was
derived by Bose. In his historic paper of 1924, Bose treated black-body radiation as a gas of pho-
tons; however, instead of considering the allocation of the “individual” photons to the various
energy states of the system, he fixed his attention on the number of states that contained “a par-
ticular number” of photons. Einstein, who seems to have translated Bose’s paper into German
from an English manuscript sent to him by the author, at once recognized the importance of
this approach and added the following note to his translation: “Bose’s derivation of Planck’s
formula is in my opinion an important step forward. The method employed here would also
yield the quantum theory of an ideal gas, which I propose to demonstrate elsewhere.”

Implicit in Bose’s approach was the fact that in the case of photons what really mat-
tered was “the set of numbers of photons in various energy states of the system” and not the
specification as to “which photon was in which state”; in other words, photons were mutu-
ally indistinguishable. Einstein argued that what Bose had implied for photons should be
true for material particles as well (for the property of indistinguishability arose essentially
from the wave character of these entities and, according to de Broglie, material particles also
possessed that character).!? In two papers, which appeared soon after, Einstein (1924, 1925)
applied Bose’s method to the study of an ideal gas and thereby developed what we now call
Bose-Einstein statistics. In the second of these papers, the fundamental difference between
the new statistics and the classical Maxwell-Boltzmann statistics comes out so transparently
in terms of the indistinguishability of the molecules.'® In the same paper, Einstein discovered
the phenomenon of Bose-Einstein condensation which, 13 years later, was adopted by London
(1938a,b) as the basis for a microscopic understanding of the curious properties of liquid He*
at low temperatures.

Following the enunciation of Pauli’s exclusion principle (1925), Fermi (1926) showed that
certain physical systems would obey a different kind of statistics, namely the Fermi-Dirac
statistics, in which not more than one particle could occupy the same energy state (n; =0,1). It
seems important to mention here that Bose’s method of 1924 leads to the Fermi-Dirac dis-
tributior} as well, provided that one limits the occupancy of an energy state to at most one
particle.

1 Strictly speaking, it might be somewhat misleading to cite Einstein’s work on the photoelectric effect as a proof of
the existence of photons. In fact, many of the effects (including the photoelectric effect), for which it seems necessary
to invoke photons, can be explained away on the basis of a wave theory of radiation. The only phenomena for which
photons seem indispensable are the ones involving fluctuations, such as the Hanbury Brown-Twiss effect or the Lamb
shift. For the relevance of fluctuations to the problem of radiation, see ter Haar (1967, 1968).

120f course, in the case of material particles, the total number N (of the particles) will also have to be conserved; this
had not to be done in the case of photons. For details, see Section 6.1.

31t is here that one encounters the correct method of counting “the number of distinct ways in which g; energy states
can accommodate n; particles,” depending on whether the particles are (i) distinguishable or (ii) indistinguishable. The
occupancy of the individual states was, in each case, unrestricted, thatis, n; =0,1,2,....

4Dirac, who was the first to investigate the connection between statistics and wave mechanics, showed, in 1926, that
the wave functions describing a system of identical particles obeying Bose-Einstein (or Fermi-Dirac) statistics must be
symmetric (or antisymmetric) with respect to an interchange of two particles.
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Soon after its appearance, the Fermi-Dirac statistics were applied by Fowler (1926) to
discuss the equilibrium states of white dwarf stars and by Pauli (1927) to explain the weak,
temperature-independent paramagnetism of alkali metals; in each case, one had to deal with a
“highly degenerate” gas of electrons that obey Fermi-Dirac statistics. In the wake of this, Som-
merfeld produced his monumental work of 1928 that not only put the electron theory of metals
on a physically secure foundation but also gave it a fresh start in the right direction. Thus, Som-
merfeld could explain practically all the major properties of metals that arose from conduction
electrons and, in each case, obtained results that showed much better agreement with exper-
iment than the ones following from the classical theories of Riecke (1898), Drude (1900), and
Lorentz (1904-1905). Around the same time, Thomas (1927) and Fermi (1928) investigated the
electron distribution in heavier atoms and obtained theoretical estimates for the relevant bind-
ing energies; these investigations led to the development of the so-called Thomas—Fermi model
ofthe a'i(s)m, which was later extended so that it could be applied to molecules, solids, and nuclei
as well.

Thus, the whole structure of statistical mechanics was overhauled by the introduction
of the concept of indistinguishability of (identical) particles.'® The statistical aspect of the
problem, which was already there in view of the large number of particles present, was now
augmented by another statistical aspect that arose from the probabilistic nature of the wave
mechanical description. One had, therefore, to carry out a two-fold averaging of the dynamical
variables over the states of the given system in order to obtain the relevant expectation val-
ues. That sort of a situation was bound to necessitate a reformulation of the ensemble theory
itself, which was carried out step by step. First, Landau (1927) and von Neumann (1927) intro-
duced the so-called density matrix, which was the quantum-mechanical analogue of the density
function of the classical phase space; this was elaborated, both from statistical and quantum-
mechanical points of view, by Dirac (1929-1931). Guided by the classical ensemble theory, these
authors considered both microcanonical and canonical ensembles; the introduction of grand
canonical ensembles in quantum statistics was made by Pauli (1927).17

The important question as to which particles would obey Bose-Einstein statistics and
which Fermi-Dirac remained theoretically unsettled until Belinfante (1939) and Pauli (1940)
discovered the vital connection between spin and statistics.'® It turns out that those particles
whose spin is an integral multiple of / obey Bose-Einstein statistics while those whose spin
is a half-odd integral multiple of ~ obey Fermi-Dirac statistics. To date, no third category of
particles has been discovered.

Apart from the foregoing milestones, several notable contributions toward the devel-
opment of statistical mechanics have been made from time to time; however, most of those
contributions were concerned with the development or perfection of mathematical techniques
that make application of the basic formalism to actual physical problems more fruitful. A review
of these developments is out of place here; they will be discussed at their appropriate place in
the text.

5For an excellent review of this model, see March (1957).

160f course, in many a situation where the wave nature of the particles is not so important, classical statistics continue
to apply.

17A detailed treatment of this development has been given by Kramers (1938).

18See also Liiders and Zumino (1958).



The Statistical Basis
of Thermodynamics

In the annals of thermal physics, the 1850s mark a very definite epoch. By that time the
science of thermodynamics, which grew essentially out of an experimental study of the
macroscopic behavior of physical systems, had become, through the work of Carnot, Joule,
Clausius, and Kelvin, a secure and stable discipline of physics. The theoretical conclusions
following from the first two laws of thermodynamics were found to be in very good agree-
ment with the corresponding experimental results.! At the same time, the kinetic theory of
gases, which aimed at explaining the macroscopic behavior of gaseous systems in terms of
the motion of their molecules and had so far thrived more on speculation than calculation,
began to emerge as a real, mathematical theory. Its initial successes were glaring; however,
areal contact with thermodynamics could not be made until about 1872 when Boltzmann
developed his H-theorem and thereby established a direct connection between entropy on
one hand and molecular dynamics on the other. Almost simultaneously, the conventional
(kinetic) theory began giving way to its more sophisticated successor — the ensemble the-
ory. The power of the techniques that finally emerged reduced thermodynamics to the
status of an “essential” consequence of the get-together of the statistics and the mechan-
ics of the molecules constituting a given physical system. It was then natural to give the
resulting formalism the name Statistical Mechanics.

As a preparation toward the development of the formal theory, we start with a few
general considerations regarding the statistical nature of a macroscopic system. These
considerations will provide ground for a statistical interpretation of thermodynamics. It
may be mentioned here that, unless a statement is made to the contrary, the system under
study is supposed to be in one of its equilibrium states.

1.1 The macroscopic and the microscopic states

We consider a physical system composed of N identical particles confined to a space of
volume V. In a typical case, N would be an extremely large number — generally, of order
10%3. In view of this, it is customary to carry out analysis in the so-called thermodynamic
limit, namely N — oo, V — oo (such that the ratio N/V, which represents the particle den-
sity n, stays fixed at a preassigned value). In this limit, the extensive properties of the system

I'The third law, which is also known as Nernst’s heat theorem, did not arrive until about 1906. For a general discussion
of this law, see Simon (1930) and Wilks (1961); these references also provide an extensive bibliography on this subject.

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00001-3 1
© 2011 Elsevier Ltd. All rights reserved.



2 Chapter 1 » The Statistical Basis of Thermodynamics

become directly proportional to the size of the system (i.e., proportional to N or to V),
while the intensive properties become independent thereof; the particle density, of course,
remains an important parameter for all physical properties of the system.

Next we consider the total energy E of the system. If the particles comprising the system
could be regarded as noninteracting, the total energy E would be equal to the sum of the
energies ¢; of the individual particles:

E= Z ni&q, (D
i
where n; denotes the number of particles each with energy ¢;. Clearly,

N=Yn. @)
i

According to quantum mechanics, the single-particle energies ¢; are discrete and their val-
ues depend crucially on the volume V to which the particles are confined. Accordingly, the
possible values of the total energy E are also discrete. However, for large V, the spacing of
the different energy values is so small in comparison with the total energy of the system
that the parameter E might well be regarded as a continuous variable. This would be true
even if the particles were mutually interacting; of course, in that case the total energy E
cannot be written in the form (1).

The specification of the actual values of the parameters N, V, and E then defines a
macrostate of the given system.

At the molecular level, however, a large number of possibilities still exist because at
that level there will in general be a large number of different ways in which the macrostate
(N, V,E) of the given system can be realized. In the case of a noninteracting system, since
the total energy E consists of a simple sum of the N single-particle energies ¢;, there will
obviously be alarge number of different ways in which the individual ¢; can be chosen so as
to make the total energy equal to E. In other words, there will be a large number of different
ways in which the total energy E of the system can be distributed among the N particles
constituting it. Each of these (different) ways specifies a microstate, or complexion, of the
given system. In general, the various microstates, or complexions, of a given system can
be identified with the independent solutions v (ry,...,ryN) of the Schréodinger equation of
the system, corresponding to the eigenvalue E of the relevant Hamiltonian. In any case,
to a given macrostate of the system there does in general correspond a large number of
microstates and it seems natural to assume, when there are no other constraints, that at
any time ¢ the system is equally likely to be in any one of these microstates. This assump-
tion forms the backbone of our formalism and is generally referred to as the postulate of
“equal a priori probabilities” for all microstates consistent with a given macrostate.

The actual number of all possible microstates will, of course, be a function of N, V,
and E and may be denoted by the symbol Q(N,V,E); the dependence on V comes in
because the possible values ¢; of the single-particle energy ¢ are themselves a function
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of this parameter.” Remarkably enough, it is from the magnitude of the number £, and
from its dependence on the parameters N, V, and E, that complete thermodynamics of
the given system can be derived!

We shall not stop here to discuss the ways in which the number Q (N, V, E) can be com-
puted; we shall do that only after we have developed our considerations sufficiently so that
we can carry out further derivations from it. First we have to discover the manner in which
this number is related to any of the leading thermodynamic quantities. To do this, we con-
sider the problem of “thermal contact” between two given physical systems, in the hope
that this consideration will bring out the true nature of the number €.

1.2 Contact between statistics and thermodynamics:
physical significance of the number Q (N, V,E)

We consider two physical systems, A; and Az, which are separately in equilibrium; see
Figure 1.1. Let the macrostate of A; be represented by the parameters Ny, V3, and Ej so
that it has Q1 (IV1, V1, E1) possible microstates, and the macrostate of A, be represented by
the parameters N», Vs, and E» so that it has Q2 (N>, V», E») possible microstates. The math-
ematical form of the function ©; may not be the same as that of the function Q,, because
that ultimately depends on the nature of the system. We do, of course, believe that all
thermodynamic properties of the systems A; and A, can be derived from the functions
Q1 (N1, V1, Ey) and Q2 (N», Vo, E»), respectively.

We now bring the two systems into thermal contact with each other, thus allowing the
possibility of exchange of energy between the two; this can be done by sliding in a con-
ducting wall and removing the impervious one. For simplicity, the two systems are still
separated by a rigid, impenetrable wall, so that the respective volumes V; and V, and the
respective particle numbers N; and N, remain fixed. The energies E; and E,, however,
become variable and the only condition that restricts their variation is

E©® = E| + E, = const. 1)

A Ay
(Ny, Vi, Eq) | (Ng, Vo, Bp)

FIGURE 1.1 Two physical systems being brought into thermal contact.

2It may be noted that the manner in which the ¢; depend on V is itself determined by the nature of the system. For
instance, it is not the same for relativistic systems as it is for nonrelativistic ones; compare, for instance, the cases dealt
with in Section 1.4 and in Problem 1.7. We should also note that, in principle, the dependence of Q2 on V arises from
the fact that it is the physical dimensions of the container that appear in the boundary conditions imposed on the wave
functions of the system.
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Here, E©©) denotes the energy of the composite system A (= A; + A;); the energy of inter-
action between A; and Ay, if any, is being neglected. Now, at any time ¢, the subsystem A; is
equally likely to be in any one of the Q) (E;) microstates while the subsystem A, is equally
likely to be in any one of the Q. (E,) microstates; therefore, the composite system A is
equally likely to be in any one of the

Q1(EDQ0(E) = 0 (ENQEQ - E) =20 E? E) @)

microstates.® Clearly, the number Q© itself varies with E;. The question now arises: at
what value of E; will the composite system be in equilibrium? In other words, how far
will the energy exchange go in order to bring the subsystems A; and Ay into mutual
equilibrium?

We assert that this will happen at that value of E; which maximizes the number
QO (EO® E). The philosophy behind this assertion is that a physical system, left to itself,
proceeds naturally in a direction that enables it to assume an ever-increasing number
of microstates until it finally settles down in a macrostate that affords the largest pos-
sible number of microstates. Statistically speaking, we regard a macrostate with a larger
number of microstates as a more probable state, and the one with the largest number of
microstates as the most probable one. Detailed studies show that, for a typical system,
the number of microstates pertaining to any macrostate that departs even slightly from
the most probable one is “orders of magnitude” smaller than the number pertaining to
the latter. Thus, the most probable state of a system is the macrostate in which the system
spends an “overwhelmingly” large fraction of its time. It is then natural to identify this state
with the equilibrium state of the system.

Denoting the equilibrium value of E; by E; (and that of E» by E»), we obtain, on
maximizing Q©,

021 (E — — 092 (E; oE.
( u 1)) - 92(E2>+91<E1>(—2( 2)) 2=
8E1 E] =E1 aEZ E2=E2 aEl
Since dEz/dE; = —1, see equation (1), the foregoing condition can be written as

<3anl(E1)> _(311192(52))
E; B =F 0E> Ey=F, ’

Thus, our condition for equilibrium reduces to the equality of the parameters 8; and 8>
of the subsystems A; and Ay, respectively, where $ is defined by

alnQ(N,V,E
p= <M) . 3)
N,V,E=

9OE &

31t is obvious that the macrostate of the composite system A© has to be defined by two energies, namely E; and E,
(or else E© and Ey).
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We thus find that when two physical systems are brought into thermal contact, which
allows an exchange of energy between them, this exchange continues until the equilibrium
values E; and E; of the variables E; and E, are reached. Once these values are reached,
there is no more net exchange of energy between the two systems; the systems are then
said to have attained a state of thermal equilibrium. According to our analysis, this hap-
pens only when the respective values of the parameter 8, namely g; and B2, become
equal.* It is then natural to expect that the parameter g is somehow related to the ther-
modynamic temperature T of a given system. To determine this relationship, we recall the
thermodynamic formula

()t
9E)yy T

where S is the entropy of the system in question. Comparing equations (3) and (4), we
conclude that an intimate relationship exists between the thermodynamic quantity S and
the statistical quantity ; we may, in fact, write for any physical system

AS 1
A(nQ) ~ BT

= const. (5)

This correspondence was first established by Boltzmann who also believed that, since
the relationship between the thermodynamic approach and the statistical approach seems
to be of a fundamental character, the constant appearing in (5) must be a universal
constant. It was Planck who first wrote the explicit formula

S=kInQ, (6)

without any additive constant Sp. As it stands, formula (6) determines the absolute value of
the entropy of a given physical system in terms of the total number of microstates acces-
sible to it in conformity with the given macrostate. The zero of entropy then corresponds
to the special state for which only one microstate is accessible (2 = 1) — the so-called
“unique configuration”; the statistical approach thus provides a theoretical basis for the
third law of thermodynamics as well. Formula (6) is of fundamental importance in physics;
it provides a bridge between the microscopic and the macroscopic.

Now, in the study of the second law of thermodynamics we are told that the law of
increase of entropy is related to the fact that the energy content of the universe, in its
natural course, is becoming less and less available for conversion into work; accordingly,
the entropy of a given system may be regarded as a measure of the so-called disorder or
chaos prevailing in the system. Formula (6) tells us how disorder arises microscopically.
Clearly, disorder is a manifestation of the largeness of the number of microstates the sys-
tem can have. The larger the choice of microstates, the lesser the degree of predictability
and hence the increased level of disorder in the system. Complete order prevails when and

4This result may be compared with the so-called “zeroth law of thermodynamics,” which stipulates the existence of
a common parameter T for two or more physical systems in thermal equilibrium.
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only when the system has no other choice but to be in a unique state (2 = 1); this, in turn,
corresponds to a state of vanishing entropy.
By equations (5) and (6), we also have

=17 @)
The universal constant k is generally referred to as the Boltzmann constant. In Section 1.4
we shall discover how k is related to the gas constant R and the Avogadro number N4; see
equation (1.4.3).5

1.3 Further contact between statistics
and thermodynamics

In continuation of the preceding considerations, we now examine a more elaborate
exchange between the subsystems A; and A;. If we assume that the wall separating the
two subsystems is movable as well as conducting, then the respective volumes V; and V,
(of subsystems A; and Ay) also become variable; indeed, the total volume VO(=V; + V»)
remains constant, so that effectively we have only one more independent variable. Of
course, the wall is still assumed to be impenetrable to particles, so the numbers N; and
N, remain fixed. Arguing as before, the state of equilibrium for the composite system A®
will obtain when the number Q© (V@ ,E©; Vv, E) attains its largest value; that is, when

not only
(81n§21) =<Bln92> )
8E1 N1,Vi; EI:EI aEz N, Va; EZ:EZ
but also
(E)anl) =<aln92> b
8Vl Nl'El; V1=V1 8V2 Nz,Ez; VZZVZ

Our conditions for equilibrium now take the form of an equality between the pair of
parameters (81,7n1) of the subsystem A; and the parameters (82,72) of the subsystem A,
where, by definition,

:(aan(N,V,E) @

- v )N,E,V:V '

Similarly, if A} and A, came into contact through a wall that allowed an exchange of parti-
cles as well, the conditions for equilibrium would be further augmented by the equality

SWe follow the notation whereby equation (1.4.3) means equation (3) of Section 1.4. However, while referring to an
equation in the same section, we will omit the mention of the section number.
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of the parameter ¢{; of subsystem A; and the parameter ¢» of subsystem A, where, by
definition,

3)

<8ln§2(N, V,E))
oN VEN=N

To determine the physical meaning of the parameters n and ¢, we make use of equa-
tion (1.2.6) and the basic formula of thermodynamics, namely

dE=TdS—PdV + pndN, 4)

where P is the thermodynamic pressure and i the chemical potential of the given system.
It follows that

n:% and ;:—%. (5)
From a physical point of view, these results are completely satisfactory because, thermo-
dynamically as well, the conditions of equilibrium between two systems A; and Ay, if the
wall separating them is both conducting and movable (thus making their respective ener-
gies and volumes variable), are indeed the same as the ones contained in equations (1a)
and (1b), namely

Tl = Tg and P1 = Pz. (6)

On the other hand, if the two systems can exchange particles as well as energy but
have their volumes fixed, the conditions of equilibrium, obtained thermodynamically, are
indeed

Tl = Tz and M1 = 2. (7)

And finally, if the exchange is such that all three (macroscopic) parameters become
variable, then the conditions of equilibrium become

T'=T,, Py=P;, and puj=uo. 8)°

It is gratifying that these conclusions are identical to the ones following from statistical
considerations.

Combining the results of the foregoing discussion, we arrive at the following recipe
for deriving thermodynamics from a statistical beginning: determine, for the macrostate
(N, V,E) of the given system, the number of all possible microstates accessible to the sys-
tem,; call this number Q (V, V, E). Then, the entropy of the system in that state follows from

51t may be noted that the same would be true for any two parts of a single thermodynamic system; consequently, in
equilibrium, the parameters T, P, and x would be constant throughout the system.
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the fundamental formula
S(N,V,E) =kInQ(N,V,E), 9)

while the leading intensive fields, namely temperature, pressure, and chemical potential,

are given by
a8\ _ 1. (8S\ _ P (dS\ _ 10
E)ny T \oV)yp T \oN)yp T

Alternatively, we can write’

aS aS oE
P= (W)ME/ (a*E)N,V = ‘(W>N,s 4y
(iw),,/ (G8),, = (%)
p=—(22 Py (&) (12)
8N V,E BE N,V BN V,S

oE

Formulae (11) through (13) follow equally well from equation (4). The evaluation of P, i,
and T from these formulae indeed requires that the energy E be expressed as a function
of the quantities N, V, and S; this should, in principle, be possible once S is known as a
function of N, V, and E.

The rest of the thermodynamics follows straightforwardly; see Appendix H. For
instance, the Helmholtz free energy A, the Gibbs free energy G, and the enthalpy H are
given by

and

while

A=E-TS, (14)
G=A+PV=E-TS+PV
—uN (15)®

In writing these formulae, we have made use of the well-known relationship in partial differential calculus, namely
that “if three variables x, y, and z are mutually related, then (see Appendix H)

(3).(2),(8), =10

8The relation E — TS+ PV = uN follows directly from (4). For this, all we have to do is to regard the given system
as having grown to its present size in a gradual manner, such that the intensive parameters, T, P, and u stayed constant
throughout the process while the extensive parameters N, V, and E (and hence S) grew proportionately with one another.
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and

H=E+PV=G+TS. (16)

The specific heat at constant volume, Cy, and the one at constant pressure, Cp, would be

given by
aS oE
o=1(57),, (7)., o

_(3S\ _(dE+PV)\ _ (oH
CP:T(ﬁ>N,P_( oT >N,P_(3T)N,P. 4o

1.4 The classical ideal gas

To illustrate the approach developed in the preceding sections, we shall now derive
the various thermodynamic properties of a classical ideal gas composed of monatomic
molecules. The main reason why we choose this highly specialized system for considera-
tion is that it affords an explicit, though asymptotic, evaluation of the number Q (N, V, E).
This example becomes all the more instructive when we find that its study enables us,
in a most straightforward manner, to identify the Boltzmann constant k in terms of
other physical constants; see equation (3). Moreover, the behavior of this system serves
as a useful reference with which the behavior of other physical systems, especially real
gases (with or without quantum effects), can be compared. And, indeed, in the limit of
high temperatures and low densities the ideal-gas behavior becomes typical of most real
systems.

Before undertaking a detailed study of this case it appears worthwhile to make a remark
that applies to all classical systems composed of noninteracting particles, irrespective
of the internal structure of the particles. This remark is related to the explicit dependence
of the number Q (N, V,E) on V and hence to the equation of state of these systems. Now,
if there do not exist any spatial correlations among the particles, that is, if the probability
of any one of them being found in a particular region of the available space is completely
independent of the location of the other particles,’ then the total number of ways in which
the N particles can be spatially distributed in the system will be simply equal to the prod-
uct of the numbers of ways in which the individual particles can be accommodated in the
same space independently of one another. With N and E fixed, each of these numbers will
be directly proportional to V, the volume of the container; accordingly, the total number
of ways will be directly proportional to the Nth power of V:

and

QN,E, V) oc VN, n

9This will be true if (i) the mutual interactions among particles are negligible, and (ii) the wave packets of individual
particles do not significantly overlap (or, in other words, the quantum effects are also negligible).
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Combined with equations (1.3.9) and (1.3.10), this gives

sz(aan(N,E,V)> :kg @)
N,E

T 1% v’

If the system contains 7 moles of the gas, then N = nN4, where N, is the Avogadro number.
Equation (2) then becomes

PV =NkT =nRT (R=kNy), 3)

which is the famous ideal-gas law, R being the gas constant per mole. Thus, for any
classical system composed of noninteracting particles the ideal-gas law holds.

For deriving other thermodynamic properties of this system, we require a detailed
knowledge of the way Q depends on the parameters N,V, and E. The problem essen-
tially reduces to determining the total number of ways in which equations (1.1.1) and
(1.1.2) can be mutually satisfied. In other words, we have to determine the total number of
(independent) ways of satisfying the equation

3N
Y er=E @
r=1

where ¢, are the energies associated with the various degrees of freedom of the N par-
ticles. The reason why this number should depend on the parameters N and E is quite
obvious. Nevertheless, this number also depends on the “spectrum of values” that the vari-
ables ¢, can assume; it is through this spectrum that the dependence on V comes in. Now,
the energy eigenvalues for a free, nonrelativistic particle confined to a cubical box of side
L (V =I3), under the condition that the wave function v (r) vanishes everywhere on the
boundary, are given by

2

Ny, Ny, Nz) =
e(ny y z) 8mL2

(n)25+n)2/+n§); nx;ny;nzz 1r2y3)4--r (5)
where h is Planck’s constant and m the mass of the particle. The number of distinct
eigenfunctions (or microstates) for a particle of energy ¢ would, therefore, be equal to the
number of independent, positive-integral solutions of the equation

8 VZ/S
We may denote this number by Q(1,¢, V). Extending the argument, it follows that the
desired number Q(N,E,V) would be equal to the number of independent, positive-

integral solutions of the equation

3N 2/3
8mV*=/°E
an = =E*, say. )

r=1
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An important result follows straightforwardly from equation (7), even before the number
Q (N, E, V) is explicitly evaluated. From the nature of the expression appearing on the right
side of this equation, we conclude that the volume V and the energy E of the system enter
into the expression for € in the form of the combination (V?/3E). Consequently,

S(N,V,E) = S(N, v/ 3E). ®)
Hence, for the constancy of S and N, which defines a reversible adiabatic process,
V2/3E = const. 9)

Equation (1.3.11) then gives

oE 2E
p=_(7> _2E (10)
oV)ns 3V

that is, the pressure of a system of nonrelativistic, noninteracting particles is precisely
equal to two-thirds of its energy density.!? It should be noted here that, since an explicit
computation of the number @ has not yet been done, results (9) and (10) hold for quan-
tum as well as classical statistics; equally general is the result obtained by combining these,
namely

PV5/3 — const,, (11

which tells us how P varies with V during a reversible adiabatic process.

We shall now attempt to evaluate the number €. In this evaluation we shall explicitly
assume the particles to be distinguishable, so that if a particle in state i gets interchanged
with a particle in state j the resulting microstate is counted as distinct. Consequently, the
number Q (N, V, E), or better Qn(E*) (see equation (7)), is equal to the number of positive-
integral lattice points lying on the surface of a 3N-dimensional sphere of radius /E*.!!
Clearly, this number will be an extremely irregular function of E*, in that for two given
values of E* that may be very close to one another, the values of this number could be very
different. In contrast, the number Xy (E*), which denotes the number of positive-integral
lattice points lying on or within the surface of a 3N-dimensional sphere of radius /E*,
will be much less irregular. In terms of our physical problem, this would correspond to
the number, (N, V, E), of microstates of the given system consistent with all macrostates
characterized by the specified values of the parameters N and V but having energy less

l(’Cornbining (10) with (2), we obtain for the classical ideal gas: E = 3 NKT. Accordingly, equation (9) reduces to the
well-known thermodynamic relationship: V¥~ T = const., which holds during a reversible adiabatic process, with y = % .

1f the particles are regarded as indistinguishable, the evaluation of the number Q by countinglattice points becomes
quite intricate. The problem is then solved by having recourse to the theory of “partitions of numbers”; see Auluck and
Kothari (1946).
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than or equal to E; that is,

S(N,V.E)= ) QWN,V,E) (12)
E'<E
or
SN(E) = Y Qn(EY). (13)
E*/SE*

Of course, the number ¥ will also be somewhat irregular; however, we expect that its
asymptotic behavior, as E* — oo, will be a lot smoother than that of Q. We shall see in
the sequel that the thermodynamics of the system follows equally well from the number =
as from Q.

To appreciate the point made here, let us digress a little to examine the behavior of
the numbers ©Q(¢*) and X;(¢*), which correspond to the case of a single particle con-
fined to the given volume V. The exact values of these numbers, for ¢* < 10,000, can be
extracted from a table compiled by Gupta (1947). The wild irregularities of the number
Q1(¢*) can hardly be missed. The number X;(¢*), on the other hand, exhibits a much
smoother asymptotic behavior. From the geometry of the problem, we note that, asymp-
totically, %1 (¢*) should be equal to the volume of an octant of a three-dimensional sphere
of radius ,/&*, that is,

GO
e* 00 (77/6)e*3/2 L (14)

A more detailed analysis shows that, to the next approximation (see Pathria, 1966),

BN T 43/2 3n *.
(e )~€8 / — 5 (15)
the correction term arises from the fact that the volume of an octant somewhat overes-
timates the number of desired lattice points, for it includes, partly though, some points
with one or more coordinates equal to zero. Figure 1.2 shows a histogram of the actual val-
ues of X; (¢*) for * lying between 200 and 300; the theoretical estimate (15) is also shown.
In the figure, we have also included a histogram of the actual values of the corresponding
number of microstates, E’l (¢*), when the quantum numbers ny, ny, and n, can assume the
value zero as well. In the latter case, the volume of an octant somewhat underestimates the
number of desired lattice points; we now have

, b4 3
1)~ 68*3/24—?8*. (16)
Asymptotically, however, the number E’l(s*) also satisfies equation (14).

Returning to the N-particle problem, the number Xy(E*) should be asymptotically
equal to the “volume” of the “positive compartment” of a 3N-dimensional sphere of
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FIGURE 1.2 Histograms showing the actual number of microstates available to a particle in a cubical enclosure; the
lower histogram corresponds to the so-called Dirichlet boundary conditions, while the upper one corresponds to
the Neumann boundary conditions (see Appendix A). The corresponding theoretical estimates, (15) and (16), are

shown by dashed lines; the customary estimate, equation (14), is shown by a solid line.

radius /E*. Referring to equation (C.7a) of Appendix C, we obtain

* 1\V [ 73N/ +3N /2
EN(E)N<5> {<3N/2>!E

which, on substitution for E*, gives

X(N,V,E) ~ (K)

N @rnmE)3N/2
h3 (BN/2)!
Taking logarithms and applying Stirling’s formula, (B.29) in Appendix B,

In(n)y~nlnn—n ((n>1),

(17

(18)
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we get

3/2
lnE(N,V,E)%Nln[}‘;(Azln\;E) :|+2N. (19)

For deriving the thermodynamic properties of the given system we must somehow fix
the precise value of, or limits for, the energy of the system. In view of the extremely irreg-
ular nature of the function Q2 (N, V, E), the specification of a precise value for the energy
of the system cannot be justified on physical grounds, for that would never yield well-
behaved expressions for the thermodynamic functions of the system. From a practical
point of view, too, an absolutely isolated system is too much of an idealization. In the real
world, almost every system has some contact with its surroundings, however little it may
be; as a result, its energy cannot be defined sharply.!? Of course, the effective width of the
range over which the energy may vary would, in general, be small in comparison with the

mean value of the energy. Let us specify this range by the limits (E - %A) and (E + %A)
where, by assumption, A « E; typically, A/E = O(1/,/N). The corresponding number of
microstates, I'(V, V, E; A), is then given by

ISV, V,E) 3N A

T(N,V,EA) ~ 212 SN, V,E), 1
( ) °F > E ( ) (17a)
which gives
INT(N,V,EA) ~ Nin | = (42ME e e (N im (2 (19a)
R B\ 3N 2 2 E)|

Now, for N > 1, the first term in the curly bracket is negligible in comparison with any
of the terms outside this bracket, for A}im (InN)/N = 0. Furthermore, for any reasonable
—> 00

value of A /E, the same is true of the second term in this bracket.'® Hence, for all practical
purposes,

V (4xmE\3/?
lnl‘%lnE%Nln|:hg< Z\’; ) }LiN. 20)

We thus arrive at the baffling result that, for all practical purposes, the actual width of the
range allowed for the energy of the system does not make much difference; the energy

could lie between (E — %A) and (E + %A) or equally well between 0 and E. The reason
underlying this situation is that the rate at which the number of microstates of the system

12 Actually, the very act of making measurements on a system brings about, inevitably, a contact between the system
and its surroundings.

131t should be clear that, while A /E is much less than 1, it must not tend to 0, for that would make I' - 0 and InT" —
—o0. A situation of that kind would be too artificial and would have nothing to do with reality. Actually, in most physical
systems, A/E = O(N~'/2), whereby In(A/E) becomes of order In N, which again is negligible in comparison with the
terms outside the curly bracket.
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increases with energy is so fantastic, see equation (17), that even if we allow all values of
energy between zero and a particular value E, it is only the “immediate neighborhood” of
E that makes an overwhelmingly dominant contribution to this number! And since we
are finally concerned only with the logarithm of this number, even the “width” of that
neighborhood is inconsequential!

The stage is now set for deriving the thermodynamics of our system. First of all, we
have

V (4xmE\*?| 3 ”

which can be inverted to give

3h’N 28
E(S,V,N)zmexp<m_l). (22)

The temperature of the gas then follows with the help of formula (1.3.10) or (1.3.13),
which leads to the energy-temperature relationship

3 3
E:N(EkT) =n<§RT>, (23)

where n is the number of moles of the gas. The specific heat at constant volume now
follows with the help of formula (1.3.17):

oE 3

3
== = —-Nk = -nR. 24
v (3T>N,V 2Ve=2" .

For the equation of state, we obtain

oE 2FE
p=_<7> _2E (25)
oV )ys 3V

which agrees with our earlier result (10). Combined with (23), this gives

NkT
P= Vv or PV =nRT, (26)

which is the same as (3). The specific heat at constant pressure is given by, see (1.3.18),

_(3E+PV)\ 5
cp_< - )N‘P_ZnR, @7)

“Henceforth, we shall replace the sign ~, which characterizes the asymptotic character of a relationship, by the sign
of equality because for most physical systems the asymptotic results are as good as exact.
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so that, for the ratio of the two specific heats, we have

y =Cp/Cy = g (28)

Now, suppose that the gas undergoes an isothermal change of state (T = const. and

N = const.); then, according to (23), the total energy of the gas would remain constant

while, according to (26), its pressure would vary inversely with volume (Boyle’s law). The

change in the entropy of the gas, between the initial state i and the final state f, would then
be, see equation (21),

S — Si = NkIn(Vp/Vy). (29)

On the other hand, if the gas undergoes a reversible adiabatic change of state (S = const.
and N = const.), then, according to (22) and (23), both E and T would vary as V—2/3; so,
according to (25) or (26), P would vary as V53, These results agree with the conventional
thermodynamic ones, namely

PVY =const. and TVY~!=const., (30)

with y = % It may be noted that, thermodynamically, the change in E during an adiabatic
process arises solely from the external work done by the gas on the surroundings or vice
versa:

2E
dE) u4jap, = —PdV = ——dV; 31
(dE)adiab 3V (€20

see equations (1.3.4) and (25). The dependence of E on V follows readily from this
relationship.

The considerations of this section have clearly demonstrated the manner in which
the thermodynamics of a macroscopic system can be derived from the multiplicity of its
microstates (as represented by the number Q or I' or £). The whole problem then hinges
on an asymptotic enumeration of these numbers, which unfortunately is tractable only
in a few idealized cases, such as the one considered in this section; see also Problems 1.7
and 1.8. Even in an idealized case like this, there remains an inadequacy that could not be
detected in the derivations made so far; this relates to the explicit dependence of S on N.
The discussion of the next section is intended not only to bring out this inadequacy but
also to provide the necessary remedy for it.

1.5 The entropy of mixing and the Gibbs
paradox

One thing we readily observe from expression (1.4.21) is that, contrary to what is logi-
cally desired, the entropy of an ideal gas, as given by this expression, is not an extensive
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FIGURE 1.3 The mixing together of two ideal gases 1 and 2.

property of the system! That is, if we increase the size of the system by a factor «, keep-
ing the intensive variables unchanged,'® then the entropy of the system, which should
also increase by the same factor «, does not do so; the presence of the InV term in the
expression affects the result adversely. This in a way means that the entropy of this system
is different from the sum of the entropies of its parts, which is quite unphysical. A more
common way of looking at this problem is to consider the so-called Gibbs paradox.

Gibbs visualized the mixing of two ideal gases 1 and 2, both being initially at the same
temperature T; see Figure 1.3. Clearly, the temperature of the mixture would also be the
same. Now, before the mixing took place, the respective entropies of the two gases were,
see equations (1.4.21) and (1.4.23),

SizNikln\/i+gNik{l+ln(MZ#)}; i=1,2. )
After the mixing has taken place, the total entropy would be

2

3 2 kT
ST=Z[Nikan+§Nik{H—ln(%)}], @)
i=1

where V = V; + V,. Thus, the net increase in the value of S, which may be called the entropy
of mixing, is given by

2
(AS) =81 — ZSI' = k|:N1 In
i=1

+ Ny In

Vi+V;
; 3
v 3)

i+V;
Va
the quantity AS is indeed positive, as it must be for an irreversible process like mixing.

Now, in the special case when the initial particle densities of the two gases (and, hence, the
particle density of the mixture) are also the same, equation (3) becomes

N1+ N,

+ Nz In 4)

Ny + N
(AS)*:k[Nlln s 2}

which is again positive.

15This means an increase of the parameters N, V, and E to aN, «V, and «E, so that the energy per particle and the
volume per particle remain unchanged.
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So far, it seems all right. However, a paradoxical situation arises if we consider the mix-
ing of two samples of the same gas. Once again, the entropies of the individual samples
will be given by (1); of course, now m; = my = m, say. And the entropy after mixing will be
given by

Sr=NkInV + §Nk{1+1n(M>}, (2a)
2 h2

where N = Nj + N»; note that this expression is numerically the same as (2), with m; = m.
Therefore, the entropy of mixing in this case will also be given by expression (3) and, if
N1 /Vi =Ny /Vo = (N1 + N2)/ (V1 + Va), by expression (4). The last conclusion, however, is
unacceptable because the mixing of two samples of the same gas, with a common initial
temperature T and a common initial particle density n, is clearly a reversible process, for
we can simply reinsert the partitioning wall into the system and obtain a situation that is
in no way different from the one we had before mixing. Of course, we tacitly imply that
in dealing with a system of identical particles we cannot track them down individually;
all we can reckon with is their numbers. When two dissimilar gases, even with a common
initial temperature T, and a common initial particle density n, mixed together the process
was irreversible, for by reinserting the partitioning wall one would obtain two samples of
the mixture and not the two gases that were originally present; to that case, expression (4)
would indeed apply. However, in the present case, the corresponding result should be

(AS)T_, =0. (4a)'6

The foregoing result would also be consistent with the requirement that the entropy of a
given system is equal to the sum of the entropies of its parts. Of course, we had already
noticed that this is not ensured by expression (1.4.21). Thus, once again we are led to
believe that there is something basically wrong with that expression.

To see how the above paradoxical situation can be avoided, we recall that, for the
entropy of mixing of two samples of the same gas, with a common T and a common n,
we were led to result (4), which can also be written as

(AS)* =81 — (81 + S2) & klIn{(N1 + N2)!} — In(N1]) — In(N2D)], 4)

instead of the logical result (4a). A closer look at this expression shows that we would
indeed obtain the correct result if our original expression for S were diminished by an
ad hoc term, kln(N!), for that would diminish S; by kIn(Ny!), S, by kIn(V,!) and St by
kIn{(N1 + N>)!}, with the result that (AS)* would turn out to be zero instead of the expres-
sion appearing in (4). Clearly, this would amount to an ad hoc reduction of the statistical
numbers I' and X by a factor N!. This is precisely the remedy proposed by Gibbs to avoid
the paradox in question.

1811 view of this, we fear that expression (3) may also be inapplicable to this case.
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If we agree with the foregoing suggestion, then the modified expression for the entropy
of a classical ideal gas would be

V. (4xmE\**| 5
|4 3 5 2rmkT

which indeed is truly extensive! If we now mix two samples of the same gas at a common
initial temperature T, the entropy of mixing would be

_ Vi+V2\ iy V2
(AS)lEZ—k|:(N1+N2)1n<Nl+N2> N11n<N1> N21n<N2>] (3a)

and, if the initial particle densities of the samples were also equal, the result would be
(AS)i_, =0. (4a)

It may be noted that for the mixing of two dissimilar gases, the original expressions (3) and
(4) would continue to hold even when (1.4.21) is replaced by (1.4.21a).!” The paradox of
Gibbs is thereby resolved.

Equation (1a) is generally referred to as the Sackur-Tetrode equation. We reiterate the
fact that, by this equation, the entropy of the system does indeed become a truly extensive
quantity. Thus, the very root of the trouble has been eliminated by the recipe of Gibbs. We
shall discuss the physical implications of this recipe in Section 1.6; here, let us jot down
some of its immediate consequences.

First of all, we note that the expression for the energy E of the gas, written as a function
of N, V, and S, is also modified. We now have

3h2N5/3 25 5
EN,V,8) = 2 exp( =2 —2), 1.4.22
( )= temv2s exP(st 3) (1.4.22a)

which, unlike its predecessor (1.4.22), makes energy too a truly extensive quantity. Of
course, the thermodynamic results (1.4.23) through (1.4.31), derived in the previous
section, remain unchanged. However, there are some that were intentionally left out, for
they would come out correct only from the modified expression for S(V, V, E) or E(S, V,N).
The most important of these is the chemical potential of the gas, for which we obtain

oE 5 28
w= (87N>V’S:E|:37N_ 3N2k:|. (5)

"Because, in this case, the entropy Sy of the mixture would be diminished by kIn(N;!Na!), rather than by
kIn{(N1 + N2)!}.
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In view of equations (1.4.23) and (1.4.25), this becomes

M:%[mpv_mz , ©)

20

where G is the Gibbs free energy of the system. In terms of the variables N,V, and T,
expression (5) takes the form

N o\
Another quantity of importance is the Helmholtz free energy:
3/2
N{( h?

It will be noted that, while A is an extensive property of the system, w is intensive.

1.6 The “correct” enumeration of the microstates

In the preceding section we saw that an ad hoc diminution in the entropy of an N-particle
system by an amount kIn(N!), which implies an ad hoc reduction in the number of
microstates accessible to the system by a factor (N!), was able to correct the unphysical fea-
tures of some of our former expressions. It is now natural to ask: why, in principle, should
the number of microstates, computed in Section 1.4, be reduced in this manner? The phys-
ical reason for doing so is that the particles constituting the given system are not only
identical but also indistinguishable; accordingly, it is unphysical to label them as No. 1,
No. 2, No. 3, and so on and to speak of their being individually in the various single-particle
states ¢;. All we can sensibly speak of is their distribution over the states ¢; by numbers, that
is, n; particles being in the state ¢1, n, in the state ¢2, and so on. Thus, the correct way of
specifying a microstate of the system is through the distribution numbers {r;}, and not
through the statement as to “which particle is in which state.” To elaborate the point, we
may say that if we consider two microstates that differ from one another merely in an inter-
change of two particles in different energy states, then according to our original mode of
counting we would regard these microstates as distinct; in view of the indistinguishability
of the particles, however, these microstates are not distinct (for, physically, there exists no
way whatsoever of distinguishing between them).'®

180f course, if an interchange took place among particles in the same energy state, then even our original mode of
counting did not regard the two microstates as distinct.
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Now, the total number of permutations that can be effected among N particles,
distributed according to the set {n;}, is

N!

, (1)
nllngl...

where the n; must be consistent with the basic constraints (1.1.1) and (1.1.2)." If our parti-
cles were distinguishable, then all these permutations would lead to “distinct” microstates.
However, in view of the indistinguishability of the particles, these permutations must be
regarded as leading to one and the same thing; consequently, for any distribution set {n;},
we have one, and only one, distinct microstate. As a result, the total number of distinct
microstates accessible to the system, consistent with a given macrostate (N, V, E), would
be severely cut down. However, since factor (1) itself depends on the numbers n; consti-
tuting a particular distribution set and for a given macrostate there will be many such sets,
there is no straightforward way to “correct down” the number of microstates computed on
the basis of the classical concept of “distinguishability” of the particles.

The recipe of Gibbs clearly amounts to disregarding the details of the numbers 7; and
slashing the whole sequence of microstates by a common factor N1; this is correct for situa-
tions in which all N particles happen to be in different energy states but is certainly wrong
for other situations. We must keep in mind that by adopting this recipe we are still using a
spurious weight factor,

w{n;} = %, @)
nitng....
for the distribution set {n;} whereas in principle we should use a factor of unity, irre-
spective of the values of the numbers 7;.>° Nonetheless, the recipe of Gibbs does correct
the situation in a gross manner, though in matters of detail it is still inadequate. In fact,
it is only by taking w{n;} to be equal to unity (or zero) that we obtain true quantum
statistics!

We thus see that the recipe of Gibbs corrects the enumeration of the microstates, as
necessitated by the indistinguishability of the particles, only in a gross manner. Numeri-
cally, this would approach closer and closer to reality as the probability of the n; being
greater than 1 becomes less and less. This in turn happens when the given system is
at a sufficiently high temperature (so that many more energy states become accessible)
and has a sufficiently low density (so that there are not as many particles to accommo-
date). It follows that the “corrected” classical statistics represents truth more closely if the
expectation values of the occupation numbers n; are much less than unity:

(ni) <1, 3)

¥The presence of the factors (n;!) in the denominator is related to the comment made in the preceding note.
200r a factor of zero if the distribution set {n;} is disallowed on certain physical grounds, such as the Pauli exclusion
principle.
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thatis, if the numbers n; are generally 0, occasionally 1, and rarely greater than 1. Condition
(3) in a way defines the classical limit. We must, however, remember that it is because of the
application of the correction factor 1/N!, which replaces (1) by (2), that our results agree
with reality at least in the classical limit.

In Section 5.5 we shall demonstrate, in an independent manner, that the factor by
which the number of microstates, as computed for the “labeled” molecules, be reduced so
that the formalism of classical statistical mechanics becomes a true limit of the formalism
of quantum statistical mechanics is indeed N!.

Problems

1.1. (a) Show that, for two large systems in thermal contact, the number Q@ (E©®, E}) of Section 1.2
can be expressed as a Gaussian in the variable E;. Determine the root-mean-square deviation
of E) from the mean value E| in terms of other quantities pertaining to the problem.

(b) Make an explicit evaluation of the root-mean-square deviation of E; in the special case when
the systems A; and A, are ideal classical gases.

1.2. Assuming that the entropy S and the statistical number 2 of a physical system are related through

an arbitrary functional form

S=f(),

show that the additive character of S and the multiplicative character of Q necessarily require that
the function f(2) be of the form (1.2.6).

1.3. Two systems A and B, of identical composition, are brought together and allowed to exchange both
energy and particles, keeping volumes V4 and Vp constant. Show that the minimum value of the
quantity (dEs/dNp) is given by

uaTp —upTa
Tg— Ty

where the u’s and the T’s are the respective chemical potentials and temperatures.

1.4. Ina classical gas of hard spheres (of diameter D), the spatial distribution of the particles is no
longer uncorrelated. Roughly speaking, the presence of n particles in the system leaves only
avolume (V — nuy) available for the (n + 1)th particle; clearly, vp would be proportional to
D3. Assuming that Nvg < V, determine the dependence of (N, V,E) on V (compare to
equation (1.4.1)) and show that, as a result of this, V in the ideal-gas law (1.4.3) gets replaced
by (V — b), where b is four times the actual volume occupied by the particles.

1.5. Read Appendix A and establish formulae (1.4.15) and (1.4.16). Estimate the importance of the
linear term in these formulae, relative to the main term (17 /6)¢*3/2, for an oxygen molecule
confined to a cube of side 10 cm; take ¢ = 0.05 eV.

1.6. A cylindrical vessel 1 m long and 0.1 m in diameter is filled with a monatomic gas at P = 1 atm and
T =300K. The gas is heated by an electrical discharge, along the axis of the vessel, which releases
an energy of 10* joules. What will the temperature of the gas be immediately after the discharge?

1.7. Study the statistical mechanics of an extreme relativisitic gas characterized by the single-particle
energy states

he 5 5 \12
&, Ny, Nz) = o (nx+ny+nz) ,

instead of (1.4.5), along the lines followed in Section 1.4. Show that the ratio Cp/Cy in this case is
4/3, instead of 5/3.
1.8. Consider a system of quasiparticles whose energy eigenvalues are given by

e(n)=nhv; n=0,1,2,....
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Obtain an asymptotic expression for the number €2 of this system for a given number N of the
quasiparticles and a given total energy E. Determine the temperature T of the system as a function
of E/N and hv, and examine the situation for which E/(Nhv) > 1.

Making use of the fact that the entropy S(N, V, E) of a thermodynamic system is an extensive

quantity, show that
M) (1) e() —s
ON /vy g V)N E 0E /Ny

Note that this result implies that (-Nu + PV + E)/T = S, thatis, Nu = E+ PV — TS.

. Amole of argon and a mole of helium are contained in vessels of equal volume. If argon is at 300 K,

what should the temperature of helium be so that the two have the same entropy?

. Four moles of nitrogen and one mole of oxygen at P = 1 atm and T = 300K are mixed together to

form air at the same pressure and temperature. Calculate the entropy of mixing per mole of the air
formed.

. Show that the various expressions for the entropy of mixing, derived in Section 1.5, satisfy the

following relations:
(a) Forall Ny, V;,Np, and Vs,

(AS)1=2 = {(AS) — (AS)*} > 0,

the equality holding when and only when Ny /V; = Ny / V5.
(b) For a given value of (N} + Nb),

(AS)* < (N1 +No)kIn2,
the equality holding when and only when N = N,.

. If the two gases considered in the mixing process of Section 1.5 were initially at different

temperatures, say 71 and T», what would the entropy of mixing be in that case? Would the
contribution arising from this cause depend on whether the two gases were different or identical?

. Show that for an ideal gas composed of monatomic molecules the entropy change, between any

two temperatures, when the pressure is kept constant is 5/3 times the corresponding entropy
change when the volume is kept constant. Verify this result numerically by calculating the actual
values of (AS)p and (AS)y per mole of an ideal gas whose temperature is raised from 300 K to 400 K.

. We have seen that the (P, V)-relationship during a reversible adiabatic process in an ideal gas is

governed by the exponent y, such that
PVY = const.

Consider a mixture of two ideal gases, with mole fractions f; and f> and respective exponents y;
and y»,. Show that the effective exponent y for the mixture is given by

1 __f P
y—=1 n-1 r-1

. Establish thermodynamically the formulae

V(g) =S8 and V<£> =N.
aT /), on/)r

Express the pressure P of an ideal classical gas in terms of the variables x and T, and verify the
above formulae.
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In the preceding chapter we noted that, for a given macrostate (N,V,E), a statistical
system, at any time ¢, is equally likely to be in any one of an extremely large number of
distinct microstates. As time passes, the system continually switches from one microstate
to another, with the result that, over a reasonable span of time, all one observes is a behav-
ior “averaged” over the variety of microstates through which the system passes. It may,
therefore, make sense if we consider, at a single instant of time, a rather large number of
systems — all being some sort of “mental copies” of the given system — which are charac-
terized by the same macrostate as the original system but are, naturally enough, in all sorts
of possible microstates. Then, under ordinary circumstances, we may expect that the aver-
age behavior of any system in this collection, which we call an ensemble, would be identical
to the time-averaged behavior of the given system. It is on the basis of this expectation that
we proceed to develop the so-called ensemble theory.

For classical systems, the most appropriate framework for developing the desired for-
malism is provided by the phase space. Accordingly, we begin our study of the various
ensembles with an analysis of the basic features of this space.

2.1 Phase space of a classical system

The microstate of a given classical system, at any time ¢, may be defined by specifying the
instantaneous positions and momenta of all the particles constituting the system. Thus,
if N is the number of particles in the system, the definition of a microstate requires the
specification of 3N position coordinates qi,4o,...,qsny and 3N momentum coordinates
p1,P2,- .., psn- Geometrically, the set of coordinates (qg;, p;), where i = 1,2,...,3N, may be
regarded as a point in a space of 6N dimensions. We refer to this space as the phase space,
and the phase point (g;, p;) as a representative point, of the given system.

Of course, the coordinates g; and p; are functions of the time #; the precise manner in
which they vary with ¢ is determined by the canonical equations of motion,

s 8H(qi’pi)
qi = 78]91-
oH(qi, pi)

aq;

i=1,2,...,3N, 1)

i =

where H(q;, p;) is the Hamiltonian of the system. Now, as time passes, the set of
coordinates (g;, p;), which also defines the microstate of the system, undergoes a continual
change. Correspondingly, our representative point in the phase space carves out a

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00002-5 25
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trajectory whose direction, at any time f, is determined by the velocity vector v = (g;, p;),
which in turn is given by the equations of motion (1). It is not difficult to see that the
trajectory of the representative point must remain within a limited region of the phase
space; this is so because a finite volume V directly limits the values of the coordinates g;,
while a finite energy E limits the values of both the g; and the p; [through the Hamiltonian
H(q;, p»]. In particular, if the total energy of the system is known to have a precise value,
say E, the corresponding trajectory will be restricted to the “hypersurface”

H(q;,p;) =E 2)

of the phase space; on the other hand, if the total energy may lie anywhere in the range
(E- %A,E + %A), the corresponding trajectory will be restricted to the “hypershell”
defined by these limits.

Now, if we consider an ensemble of systems (i.e., the given system, along with a large
number of mental copies of it) then, at any time ¢, the various members of the ensem-
ble will be in all sorts of possible microstates; indeed, each one of these microstates must
be consistent with the given macrostate that is supposed to be common to all members
of the ensemble. In the phase space, the corresponding picture will consist of a swarm of
representative points, one for each member of the ensemble, all lying within the “allowed”
region of this space. As time passes, every member of the ensemble undergoes a continual
change of microstates; correspondingly, the representative points constituting the swarm
continually move along their respective trajectories. The overall picture of this movement
possesses some important features that are best illustrated in terms of what we call a
density function p(q,p;t).! This function is such that, at any time ¢, the number of repre-
sentative points in the “volume element” (@*N qd®N p) around the point (g, p) of the phase
space is given by the product p(q, p;)d*Ngd®Np. Clearly, the density function p(q, p;?t)
symbolizes the manner in which the members of the ensemble are distributed over all
possible microstates at different instants of time. Accordingly, the ensemble average (f) of a
given physical quantity f (g, p), which may be different for systems in different microstates,
would be given by

_ [f@pe@pind*NqdNp
[ p(q,p;ndNqd3Np

(N 3)

The integrations in (3) extend over the whole of the phase space; however, it is only
the populated regions of the phase space (p # 0) that really contribute. We note that, in
general, the ensemble average (f) may itself be a function of time.
An ensemble is said to be stationary if p does not depend explicitly on time, that is, at
all times
o

i 0. 4)

!Note that (g, p) is an abbreviation of (¢;, pi) = (q1, ..., G3N, Pl - P3N)-
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Clearly, for such an ensemble the average value (f) of any physical quantity f(g, p) will
be independent of time. Naturally, a stationary ensemble qualifies to represent a system in
equilibrium. To determine the circumstances under which equation (4) may hold, we have
to make a rather detailed study of the movement of the representative points in the phase
space.

2.2 Liouville's theorem and its consequences

Consider an arbitrary “volume” w in the relevant region of the phase space and let the
“surface” enclosing this volume be denoted by o; see Figure 2.1. Then, the rate at which
the number of representative points in this volume increases with time is written as

% pdo, )]

w

where do = (d*N qd®N p). On the other hand, the net rate at which the representative points
“flow” out of w (across the bounding surface o) is given by

/pv-fzda; 2)

o

here, v is the velocity vector of the representative points in the region of the surface
element do while 72 is the (outward) unit vector normal to this element. By the divergence
theorem, (2) can be written as

/ div(pv)dw; 3)

of course, the operation of divergence here means

3N

9 . ]
di = —(pg;)) + — (opi) ¢ 4
iv(pv) ;:1 {aCIi (pgi) o (ppl)} 4)

4

da'6

o

FIGURE 2.1 The “hydrodynamics” of the representative points in the phase space.
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In view of the fact that there are no “sources” or “sinks” in the phase space and hence the
total number of representative points remains conserved,? we have, by (1) and (3),

2 pdw= —/div(pv)dw, (5)
ot
that is,
op
/ {E +div(pv) }dw =0. (6)

Now, the necessary and sufficient condition that integral (6) vanish for all arbitrary
volumes w is that the integrand itself vanish everywhere in the relevant region of the phase
space. Thus, we must have

oo .
e +div(pv) =0, @)

which is the equation of continuity for the swarm of the representative points.
Combining (4) and (7), we obtain

ap N ap p I rag;  op
I NP 00N <7l+7l>:o. ®)
ot ;(aqiq’ ap,-p’> ; aqi  Ipi

The last group of terms vanishes identically because, by the equations of motion, we have,
for all i,
8qi _ 9°H(qipi) _ 9*H(qi,p) _  3pi

= = =L 9)
aq; aq;9p; ap;dq; ap;

Further, since p = p(g,p;t), the remaining terms in (8) may be combined to form the
“total” time derivative of p, with the result that

dp 0dp 3
—_— == ,H] =0. 1
prinirris [p,H] =0 (10)
Equation (10) embodies Liouville’s theorem (1838). According to this theorem, the “local”
density of the representative points, as viewed by an observer moving with a representa-

tive point, stays constant in time. Thus, the swarm of the representative points moves in

2This means that in the ensemble under consideration neither are any new members being added nor are any old
ones being removed.
3We recall that the Poisson bracket [p, H) stands for the sum
%": ( ap oH dp aH)
—\dq; opi  0p; 9G:)’

which is identical to the group of terms in the middle of (8).
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the phase space in essentially the same manner as an incompressible fluid moves in the
physical space!

A distinction must be made, however, between equation (10) on one hand and
equation (2.1.4) on the other. While the former derives from the basic mechanics of the
particles and is therefore quite generally true, the latter is only a requirement for equi-
librium which, in a given case, may or may not be satisfied. The condition that ensures
simultaneous validity of the two equations is clearly

3N ap . ap .

(o, H] =§<aqiqi+ Tmpi> =0. D

Now, one possible way of satisfying (11) is to assume that p, which is already assumed
to have no explicit dependence on time, is independent of the coordinates (g, p) as well,
that s,

p(q, p) = const. (12)

over the relevant region of the phase space (and, of course, is zero everywhere else). Physi-
cally, this choice corresponds to an ensemble of systems that at all times are uniformly
distributed over all possible microstates. The ensemble average (2.1.3) then reduces to

1
(f= = / fq,p)dw; (13)

w

here, » denotes the total “volume” of the relevant region of the phase space. Clearly, in
this case, any member of the ensemble is equally likely to be in any one of the various
possible microstates, inasmuch as any representative point in the swarm is equally likely
to be in the neighborhood of any phase point in the allowed region of the phase space.
This statement is usually referred to as the postulate of “equal a priori probabilities” for
the various possible microstates (or for the various volume elements in the allowed region
of the phase space); the resulting ensemble is referred to as the microcanonical ensemble.

A more general way of satisfying (11) is to assume that the dependence of p on (g,p)
comes only through an explicit dependence on the Hamiltonian H(g, p), that is,

eo(q,p) =plH(q,p)]; (14)

condition (11) is then identically satisfied. Equation (14) provides a class of density func-
tions for which the corresponding ensemble is stationary. In Chapter 3 we shall see that
the most natural choice in this class of ensembles is the one for which

p(q,p) x exp[—H(q,p)/kT). (15)

The ensemble so defined is referred to as the canonical ensemble.
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2.3 The microcanonical ensemble

In this ensemble the macrostate of a system is defined by the number of molecules N,
the volume V, and the energy E. However, in view of the considerations expressed in
Section 1.4, we may prefer to specify a range of energy values, say from (E — %A) to
(E+ %A), rather than a sharply defined value E. With the macrostate specified, a choice
still remains for the systems of the ensemble to be in any one of a large number of pos-
sible microstates. In the phase space, correspondingly, the representative points of the
ensemble have a choice to lie anywhere within a “hypershell” defined by the condition

(E—%A>SH(6I,P)S(E+%A>- ey

The volume of the phase space enclosed within this shell is given by

w:/dwz/(d3qu3Np>, ®)

where the primed integration extends only over that part of the phase space which con-
forms to condition (1). It is clear that » will be a function of the parameters N,V,E,
and A.

Now, the microcanonical ensemble is a collection of systems for which the density
function p is, at all times, given by

p(q,p) = const. if (E—%A)fH(q,p)S(E+%A)
(3)
0 otherwise

Accordingly, the expectation value of the number of representative points lying in a vol-
ume element dw of the relevant hypershell is simply proportional to dw. In other words, the
a priori probability of finding a representative point in a given volume element dw is the
same as that of finding a representative point in an equivalent volume element dw located
anywhere in the hypershell. In our original parlance, this means an equal a priori probabil-
ity for a given member of the ensemble to be in any one of the various possible microstates.
In view of these considerations, the ensemble average (f), as given by equation (2.2.13),
acquires a simple physical meaning. To see this, we proceed as follows.

Since the ensemble under study is a stationary one, the ensemble average of any phy-
sical quantity f will be independent of time; accordingly, taking a time average thereof will
not produce any new result. Thus

(f) = the ensemble average of f

= the time average of (the ensemble average of f).



2.3 The microcanonical ensemble 31

Now, the processes of time averaging and ensemble averaging are completely indepen-
dent, so the order in which they are performed may be reversed without causing any
change in the value of (f). Thus

(f) = the ensemble average of (the time average of f).

Now, the time average of any physical quantity, taken over a sufficiently long interval of
time, must be the same for every member of the ensemble, for after all we are dealing
with only mental copies of a given system.* Therefore, taking an ensemble average thereof
should be inconsequential, and we may write

(f) = the long-time average of f,

where the latter may be taken over any member of the ensemble. Furthermore, the long-
time average of a physical quantity is all one obtains by making a measurement of that
quantity on the given system; therefore, it may be identified with the value one expects to
obtain through experiment. Thus, we finally have

(f ) =fexp- (4)

This brings us to the most important result: the ensemble average of any physical quantity
f is identical to the value one expects to obtain on making an appropriate measurement on
the given system.

The next thing we look for is the establishment of a connection between the mechanics
of the microcanonical ensemble and the thermodynamics of the member systems. To do
this, we observe that there exists a direct correspondence between the various microstates
of the given system and the various locations in the phase space. The volume w (of the
allowed region of the phase space) is, therefore, a direct measure of the multiplicity I" of the
microstates accessible to the system. To establish a numerical correspondence between

“To provide a rigorous justification for this assertion is not trivial. One can readily see that if, for any particular mem-
ber of the ensemble, the quantity f is averaged only over a short span of time, the result is bound to depend on the
relevant “subset of microstates” through which the system passes during that time. In the phase space, this will mean
an averaging over only a “part of the allowed region.” However, if we employ instead a sufficiently long interval of time,
the system may be expected to pass through almost all possible microstates “without fear or favor”; consequently, the
result of the averaging process would depend only on the macrostate of the system, and not on a subset of microstates.
Correspondingly, the averaging in the phase space would go over practically all parts of the allowed region, again “with-
out fear or favor.” In other words, the representative point of our system will have traversed each and every part of the
allowed region almost uniformly. This statement embodies the so-called ergodic theorem or ergodic hypothesis, which
was first introduced by Boltzmann (1871). According to this hypothesis, the trajectory of a representative point passes,
in the course of time, through each and every point of the relevant region of the phase space. A little reflection, however,
shows that the statement as such requires a qualification; we better replace it by the so-called quasiergodic hypothesis,
according to which the trajectory of a representative point traverses, in the course of time, any neighborhood of any point
of the relevant region. For further details, see ter Haar (1954, 1955), Farquhar (1964).

Now, when we consider an ensemble of systems, the foregoing statement should hold for every member of the
ensemble; thus, irrespective of the initial (and final) states of the various systems, the long-time average of any physical
quantity f should be the same for every member system.
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and I', we need to discover a fundamental volume vy that could be regarded as “equivalent
to one microstate.” Once this is done, we may say that, asymptotically,

I'=w/wp. (5)

The thermodynamics of the system would then follow in the same way as in Sections 1.2—
1.4, namely through the relationship

S=kInT = kIn(w/wg), etc. (6)

The basic problem then consists in determining wg. From dimensional considerations,
see (2), wp must be in the nature of an “angular momentum raised to the power 3N.” To
determine it exactly, we consider certain simplified systems, both from the point of view
of the phase space and from the point of view of the distribution of quantum states.

2.4 Examples

We consider, first of all, the problem of a classical ideal gas composed of monatomic par-
ticles; see Section 1.4. In the microcanonical ensemble, the volume » of the phase space
accessible to the representative points of the (member) systems is given by

:/.../<d3qu3Np>, e

where the integrations are restricted by the conditions that (i) the particles of the system
are confined in physical space to volume V, and (ii) the total energy of the system lies
between the limits (E — 1 A) and (E + } A). Since the Hamiltonian in this case is a function
of the p; alone, integrations over the g; can be carried out straightforwardly; these give a
factor of VV. The remaining integral is

[ e L e

(Ef%A) (p /2m) (E+32) 2m(E-}a)< Zy2<2m(E+ A)

i=1 i=1

which is equal to the volume of a 3N-dimensional hypershell, bounded by hyperspheres
of radii

[fn(e-22)] o (e 1)

For A « E, this is given by the thickness of the shell, which is almost equal to A(m/2E)'/?,
multiplied by the surface area of a 3N-dimensional hypersphere of radius /(2mE). By
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equation (7) of Appendix C, we obtain for this integral

m\V2 [ 2n3N2 3N-1)/2
A(ﬁ) {[(SN/Z)—I]!(sz)( e

which gives

AN (2nmE)3N/2

T E [BN/2) — il @
Comparing (2) with (1.4.17 and 1.4.17a), we obtain the desired correspondence, namely

(w/ Masymp = wo = th;

see also Problem 2.9. Quite generally, if the system under study has & degrees of freedom,
the desired conversion factor is

wg = h?. 3)

In the case of a single particle, & = 3; accordingly, the number of microstates available
would asymptotically be equal to the volume of the allowed region of the phase space
divided by 3. Let £(P) denote the number of microstates available to a free particle con-
fined to volume V of the physical space, its momentum p being less than or equal to a
specified value P. Then

E(P)%i/.../(d3qd3p) _ VAT @)

from which we obtain for the number of microstates with momentum lying between p and
p+dp

ax v
g(p)dp = %dp ~ ﬁ4np2dp. (5)

Expressed in terms of the particle energy, these expressions assume the form
_Vin 3/2
T(E)~ B ?(ZmE) (6)

and

dz(e)
&

a(e)ds = de ~ h—V32n(2m)3/281/2d8. (@)

The next case we consider here is that of a one-dimensional simple harmonic oscillator.
The classical expression for the Hamiltonian of this system is

1 1
H@m=§mh5%ﬁ, ®
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where k is the spring constant and m the mass of the oscillating particle. The space
coordinate g and the momentum coordinate p of the system are given by

q=Acos(wt+¢), p=mqg=-—mwAsin(wt+ @), 9)
Abeing the amplitude and w the (angular) frequency of vibration:
o=/ (k/m). (10)

The energy of the oscillator is a constant of the motion, and is given by

1
E= 5mszZ’. (11)

The phase-space trajectory of the representative point (g, p) of this system is determined
by eliminating ¢ between expressions (9) for g(¢) and p(f); we obtain

2 2

q LP
(2E/mw?) ' (2mE)

=1, (12)

which is an ellipse, with axes proportional to /E and hence area proportional to E; to be
precise, the area of this ellipse is 27 E/w. Now, if we restrict the oscillator energy to the
interval (E — %A,E + %A), its representative point in the phase space will be confined to
the region bounded by elliptical trajectories corresponding to the energy values (E + %A)
and (E — %A) The “volume” (in this case, the area) of this region will be

27(E+LiA) 27(E-1Lia
Iof - ™
(E <H(q p)< E+ A)

According to quantum mechanics, the energy eigenvalues of the harmonic oscillator are
given by

1
En=<n+§>hw; n=0,1,2,... (14)

In terms of phase space, one could say that the representative point of the system must
move along one of the “chosen” trajectories, as shown in Figure 2.2; the area of the phase
space between two consecutive trajectories, for which A = hiw, is simply 27 h.° For arbitrary
values of E and A, such that E > A >» hw, the number of eigenstates within the allowed

SStrictly speaking, the very concept of phase space is invalid in quantum mechanics because there, in principle, it is
wrong to assign to a particle the coordinates g and p simultaneously. Nevertheless, the ideas discussed here are tenable
in the correspondence limit.
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FIGURE 2.2 Eigenstates of a linear harmonic oscillator, in relation to its phase space.

energy interval is very nearly equal to A /fiw. Hence, the area of the phase space equivalent
to one eigenstate is, asymptotically, given by

wo = 2rA/w)/(A/hw) =21k = h. (15)

If, on the other hand, we consider a system of IV harmonic oscillators along the same lines
as above, we arrive at the result: wg = hV (see Problem 2.7). Thus, our findings in these
cases are consistent with our earlier result (3).

2.5 Quantum states and the phase space

At this stage we would like to say a few words on the central role played here by the Planck
constant h. The best way to appreciate this role is to recall the implications of the Heisen-
berg uncertainty principle, according to which we cannot specify simultaneously both the
position and the momentum of a particle exactly. An element of uncertainty is inherently
present and can be expressed as follows: assuming that all conceivable uncertainties of
measurement are eliminated, even then, by the very nature of things, the product of the
uncertainties Aq and Ap in the simultaneous measurement of the canonically conjugate
coordinates g and p would be of order 7:

(AGAP)min ~ h. (1)

Thus, it is impossible to define the position of a representative point in the phase space of
the given system more accurately than is allowed by condition (1). In other words, around
any point (g, p) in the (two-dimensional) phase space, there exists an area of order 7 within



36 Chapter 2 » Elements of Ensemble Theory

which the position of the representative point cannot be pinpointed. In a phase space of
2V dimensions, the corresponding “volume of uncertainty” around any point would be
of order *V. Therefore, it seems reasonable to regard the phase space as made up of ele-
mentary cells, of volume ~ BV, and to consider the various positions within such a cell
as nondistinct. These cells could then be put into one-to-one correspondence with the
quantum-mechanical states of the system.

It is, however, obvious that considerations of uncertainty alone cannot give us the
exact value of the conversion factor wg. This could only be done by an actual counting
of microstates on one hand and a computation of volume of the relevant region of the
phase space on the other, as was done in the examples of the previous section. Clearly, a
procedure along these lines could not be possible until after the work of Schrédinger and
others. Historically, however, the first to establish the result (2.4.3) was Tetrode (1912) who,
in his well-known work on the chemical constant and the entropy of a monatomic gas,
assumed that

wp = (Y, )

where z was supposed to be an unknown numerical factor. Comparing theoretical results
with the experimental data on mercury, Tetrode found that z was very nearly equal to unity;
from this he concluded that “it seems rather plausible that z is exactly equal to unity, as has
already been taken by O. Sackur (1911).”°

In the extreme relativistic limit, the same result was established by Bose (1924). In his
famous treatment of the photon gas, Bose made use of Einstein’s relationship between the
momentum of a photon and the frequency of the associated radiation, namely

P=- 3)

and observed that, for a photon confined to a three-dimensional cavity of volume V, the
relevant “volume” of the phase space,

/ (dqd®p) = Varp?dp = V(ax h3v?/c®)dv, 4)

would correspond exactly to the Rayleigh expression,
Varv?/c3)dv, (5)

for the number of normal modes of a radiation oscillator, provided that we divide phase
space into elementary cells of volume /3 and put these cells into one-to-one corre-
spondence with the vibrational modes of Rayleigh. It may, however, be added that a
two-fold multiplicity of these states (g = 2) arises from the spin orientations of the photon

8For a more satisfactory proof of this result, see Section 5.5, especially equation (5.5.22).
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(or from the states of polarization of the vibrational modes); this requires a multiplica-
tion of both expressions (4) and (5) by a factor of 2, leaving the conversion factor X

unchanged.
Problems
2.1. Show that the volume element
3N
dw = H(dqz' dpi)

2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

i=1

of the phase space remains invariant under a canonical transformation of the (generalized)

coordinates (g, p) to any other set of (generalized) coordinates (Q, P).

[Hint: Before considering the most general transformation of this kind, which is referred to as a
contact transformation, it may be helpful to consider a point transformation — one in which the
new coordinates Q; and the old coordinates g; transform only among themselves.]

(a) Verify explicitly the invariance of the volume element dw of the phase space of a single particle
under transformation from the Cartesian coordinates (x,y,z, px, Py, Pz) to the spherical polar
coordinates (1,0, ¢, pr, Po, Pg)-

(b) The foregoing result seems to contradict the intuitive notion of “equal weights for equal solid
angles,” because the factor siné is invisible in the expression for dw. Show that if we average
out any physical quantity, whose dependence on ps and py comes only through the kinetic
energy of the particle, then as a result of integration over these variables we do indeed recover
the factor siné to appear with the subelement (d6 d¢).

Starting with the line of zero energy and working in the (two-dimensional) phase space of a classical

rotator, draw lines of constant energy that divide phase space into cells of “volume” h. Calculate the

energies of these states and compare them with the energy eigenvalues of the corresponding
quantum-mechanical rotator.

By evaluating the “volume” of the relevant region of its phase space, show that the number of

microstates available to a rigid rotator with angular momentum < M is (M/#k)?. Hence determine

the number of microstates that may be associated with the quantized angular momentum

Mj = /{j(j+ 1)}k, where j=0,1,2,... or 4, 3,3,.... Interpret the result physically.

[Hint: It simplifies to consider motion in the variables 6 and ¢, with M? = p2 + (p,/ sin6)?2.]
Consider a particle of energy E moving in a one-dimensional potential well V(g), such that

av 3/2
mh’%’ < (ME—-V)P2,

Show that the allowed values of the momentum p of the particle are such that

?gpdq: (n+ l)h
2
where 7 is an integer.

The generalized coordinates of a simple pendulum are the angular displacement 6 and the angular
momentum mi?6. Study, both mathematically and graphically, the nature of the corresponding
trajectories in the phase space of the system, and show that the area A enclosed by a trajectory is
equal to the product of the total energy E and the time period 7 of the pendulum.

Derive (i) an asymptotic expression for the number of ways in which a given energy E can be
distributed among a set of N one-dimensional harmonic oscillators, the energy eigenvalues of the

oscillators being (n + %) ho;n=0,1,2,..., and (ii) the corresponding expression for the “volume” of

the relevant region of the phase space of this system. Establish the correspondence between the
two results, showing that the conversion factor wy is precisely hN.
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2.8.

2.9.
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Following the method of Appendix C, replacing equation (C.4) by the integral
o0

/e"rzdr =2,

0

show that

N
Van = / / l_[ (47‘[1’?[17‘1') = (871R3)N/(3N)!.
N i=1
0<> ri<R

i=1
Using this result, compute the “volume” of the relevant region of the phase space of an extreme
relativistic gas (¢ = pc) of N particles moving in three dimensions. Hence, derive expressions for
the various thermodynamic properties of this system and compare your results with those of

Problem 1.7.
(a) Solve the integral

// (dxy ...dxsN)
3N
0= |xi|I<R

i=1

and use it to determine the “volume” of the relevant region of the phase space of an extreme
relativistic gas (¢ = pc) of 3N particles moving in one dimension. Determine, as well, the
number of ways of distributing a given energy E among this system of particles and show that,
asymptotically, wg = h3N

(b) Compare the thermodynamics of this system with that of the system considered in Problem 2.8.



The Canonical Ensemble

In the preceding chapter we established the basis of ensemble theory and made
a somewhat detailed study of the microcanonical ensemble. In that ensemble the
macrostate of the systems was defined through a fixed number of particles N, a fixed vol-
ume V, and a fixed energy E [or, preferably, a fixed energy range (E — %A,E + %A)]. The
basic problem then consisted in determining the number Q (N, V,E), or I'(N, V,E; A), of
distinct microstates accessible to the system. From the asymptotic expressions of these
numbers, complete thermodynamics of the system could be derived in a straightforward
manner. However, for most physical systems, the mathematical problem of determin-
ing these numbers is quite formidable. For this reason alone, a search for an alternative
approach within the framework of the ensemble theory seems necessary.

Practically, too, the concept of a fixed energy (or even an energy range) for a system
belonging to the real world does not appear satisfactory. For one thing, the total energy
E of a system is hardly ever measured; for another, it is hardly possible to keep its value
under strict physical control. A far better alternative appears to be to speak of a fixed tem-
perature T of the system — a parameter that is not only directly observable (by placing a
“thermometer” in contact with the system) but also controllable (by keeping the system
in contact with an appropriate “heat reservoir”). For most purposes, the precise nature of
the reservoir is not very relevant; all one needs is that it should have an infinitely large
heat capacity, so that, irrespective of energy exchange between the system and the reser-
voir, an overall constant temperature can be maintained. Now, if the reservoir consists of
an infinitely large number of mental copies of the given system we have once again an
ensemble of systems — this time, however, it is an ensemble in which the macrostate of
the systems is defined through the parameters N, V, and T. Such an ensemble is referred
to as a canonical ensemble.

In the canonical ensemble, the energy E of a system is variable; in principle, it can
take values anywhere between zero and infinity. The question then arises: what is the
probability that, at any time ¢, a system in the ensemble is found to be in one of the states
characterized by the energy value E,;2! We denote this probability by the symbol P,. Clearly,
there are two ways in which the dependence of P, on E; can be determined. One consists
of regarding the system as in equilibrium with a heat reservoir at a common temperature T
and studying the statistics of the energy exchange between the two. The other consists of
regarding the system as a member of a canonical ensemble (N, V, T), in which an energy
€ is being shared by & identical systems constituting the ensemble, and studying the

In what follows, the energy levels E, appear as purely mechanical quantities — independent of the temperature of
the system. For a treatment involving “temperature-dependent energy levels,” see Elcock and Landsberg (1957).

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00003-7 39
© 2011 Elsevier Ltd. All rights reserved.
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statistics of this sharing process. We expect that in the thermodynamic limit the final result
in either case would be the same. Once P; is determined, the rest follows without difficulty.

3.1 Equilibrium between a system and a heat
reservoir

We consider the given system A, immersed in a very large heat reservoir A’; see Figure 3.1.
On attaining a state of mutual equilibrium, the system and the reservoir would have a
common temperature, say T. Their energies, however, would be variable and, in principle,
could have, at any time ¢, values lying anywhere between 0 and E©, where E© denotes
the energy of the composite system A (= A+ A’). If, at any particular instant of time, the
system A happens to be in a state characterized by the energy value E;, then the reservoir
would have an energy E, such that

Er+E. = E9 = const. 1

Of course, since the reservoir is supposed to be much larger than the given system, any
practical value of E, would be a very small fraction of EO®: therefore, for all practical
purposes,

E E;

5O = (1 - E((r))) <1 &)
With the state of the system A having been specified, the reservoir A’ can still be in any
one of a large number of states compatible with the energy value E,. Let the number of
these states be denoted by @'(E;). The prime on the symbol 2 emphasizes the fact that
its functional form will depend on the nature of the reservoir; of course, the details of
this dependence are not going to be of any particular relevance to our final results. Now,
the larger the number of states available to the reservoir, the larger the probability of the
reservoir assuming that particular energy value E, (and, hence, of the system A assum-
ing the corresponding energy value E;). Moreover, since the various possible states (with
a given energy value) are equally likely to occur, the relevant probability would be directly
proportional to this number; thus,

Py x Q'(E) = Q' (EY - Ep). 3)

A
(E/;T)

FIGURE 3.1 A given system A immersed in a heat reservoir A’; in equilibrium, the two have a common
temperature T.
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In view of (2), we may carry out an expansion of (3) around the value E, = E© | that is,
around E; = 0. However, for reasons of convergence, it is essential to effect the expansion
of its logarithm instead:

alnQ’

0
InQ'(E}) =InQ' (E?) + ( Yed

) (E;—E(O))—I—“‘
E'=E©
~ const — p'Er, 4)

where use has been made of formula (1.2.3), whereby

(almz) o )
9E N,V=ﬂ’

note that, in equilibrium, 8’ = 8 = 1/kT. From (3) and (4), we obtain the desired result:

Py o exp(—BE;). (6)

Normalizing (6), we get

exp(—BEy)
Pp=———, 7
"7 Y exp(—BEr) @
s

where the summation in the denominator goes over all states accessible to the system A.
We note that our final result (7) bears no relation whatsoever to the physical nature of the
reservoir A'.

We now examine the same problem from the ensemble point of view.

3.2 A system in the canonical ensemble

We consider an ensemble of & identical systems (which may be labelled as 1,2,...,V),
sharing a total energy €; let E,(r = 0,1,2,...) denote the energy eigenvalues of the systems.
If n, denotes the number of systems which, at any time ¢, have the energy value E;, then
the set of numbers {rn,} must satisfy the obvious conditions

anZeN
-

(1)
> mE=8=~NU,
;

where U(= &/NV') denotes the average energy per system in the ensemble. Any set {n,}
that satisfies the restrictive conditions (1) represents a possible mode of distribution of the
total energy & among the & members of the ensemble. Furthermore, any such mode can
be realized in a number of ways, for we may effect a reshuffle among those members of
the ensemble for which the energy values are different and thereby obtain a state of the
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ensemble that is distinct from the original one. Denoting the number of different ways of
doing so by the symbol W{n,}, we have

Win,} = # (2

np:ny.np....

In view of the fact that all possible states of the ensemble, which are compatible with con-
ditions (1), are equally likely to occur, the frequency with which the distribution set {rn,}
may appear will be directly proportional to the number W{n,}. Accordingly, the “most
probable” mode of distribution will be the one for which the number W is a maximum.
We denote the corresponding distribution set by {rn}}; clearly, the set {n}} must also satisfy
conditions (1). As will be seen in the sequel, the probability of appearance of other modes
of distribution, however little they may differ from the most probable mode, is extremely
low! Therefore, for all practical purposes, the most probable distribution set {n}} is the only
one we have to contend with.

However, unless this has been mathematically demonstrated, one must take into
account all possible modes of distribution, as characterized by the various distribution
sets {n,}, along with their respective weight factors W{n,}. Accordingly, the expectation
values, or mean values, (n;) of the numbers n, would be given by

Z/ nrWin;}
{nr}
Y Wing)

{nr}

(ny) = (3)

where the primed summations go over all distribution sets that conform to conditions (1).
In principle, the mean value (n,), as a fraction of the total number V', should be a natural
analog of the probability P, evaluated in the preceding section. In practice, however, the
fraction n;y /M also turns out to be the same.

We now proceed to derive expressions for the numbers n} and (n;), and to show that,
in the limit & — oo, they are identical.

The method of most probable values
Our aim here is to determine that distribution set which, while satisfying conditions (1),
maximizes the weight factor (2). For simplicity, we work with In W instead:

InW =In(N!) — Zln(nr!). 4)
r

Since, in the end, we propose to resort to the limit & — oo, the values of n, (which are
going to be of any practical significance) would also, in that limit, tend to infinity. It is,
therefore, justified to apply the Stirling formula, In(n!) ~ nlnn — n, to (4) and write

an=NlnN—anlnnr. (5)
r
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If we shift from the set {n;} to a slightly different set {n, + én,}, then expression (5) would
change by an amount

sAnw) = —Z(lnnr+ 1)én;. (6)
r

Now, if the set {n,} is maximal, the variation §(In W) should vanish. At the same time,
in view of the restrictive conditions (1), the variations én, themselves must satisfy the
conditions

ZSnr:O

r (7)
ZE,Snr =0.
-

The desired set {rn}} is then determined by the method of Lagrange multipliers,> by which
the condition determining this set becomes

Y (—=(nnj+1) —a - E)sn, =0, ®)

r

where « and g are the Lagrangian undetermined multipliers that take care of the restrictive
conditions (7). In (8), the variations én, become completely arbitrary; accordingly, the only
way to satisfy this condition is that all its coefficients must vanish identically, that is, for
allr,

Innf =—(a+1) - BE,
which gives
ni = Cexp(—BEy), 9)

where C is again an undetermined parameter.
To determine C and g, we subject (9) to conditions (1), with the result that

n exp(—pE)

o o) 10
N = Sexp(—pEp) 1o
~
the parameter 8 being a solution of the equation
e >_Erexp(—BEy)
Iy § SN — 11
N >_exp(—BEr) an
-

2For the method of Lagrange multipliers, see ter Haar and Wergeland (1966, Appendix C.1).
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Combining statistical considerations with thermodynamic ones, see Section 3.3, we can
show that the parameter 8 here is exactly the same as the one appearing in Section 3.1,
thatis, 8 =1/kT.

The method of mean values
Here we attempt to evaluate expression (3) for (n,), taking into account the weight factors
(2) and the restrictive conditions (1). To do this, we replace (2) by

SR PROPN)
Nlwy o] 0, ...

Wins} = 171! 12!
nop:-ny.no....

12)
with the understanding that in the end all w, will be set equal to unity, and introduce a
function

LV, U) =Y Win), (13)

{nr}
where the primed summation, as before, goes over all distribution sets that conform to
conditions (1). Expression (3) can then be written as

d
(ny) = w,a—(lnr) (14)

wr

all =1

Thus, all we need to know here is the dependence of the quantity InT" on the parameters
wr. Now,

/ a)no wnl wn2
F(W,U):N'Z (012> (15)

no! ny! ny!
) \ 07T TR

but the summation appearing here cannot be evaluated explicitly because it is restricted
to those sets only that conform to the pair of conditions (1). If our distribution sets
were restricted by the condition ). n, = ¥ alone, then the evaluation of (15) would have
been trivial; by the multinomial theorem, I'(s/') would have been simply (wp 4+ w1 +---)*.
The added restriction ), n,E, = N U, however, permits the inclusion of only a “limited”
number of terms in the sum — and that constitutes the real difficulty of the problem.
Nevertheless, we can still hope to make some progress because, from a physical point
of view, we do not require anything more than an asymptotic result — one that holds in
the limit & — co. The method commonly used for this purpose is the one developed by
Darwin and Fowler (1922a,b, 1923), which itself makes use of the saddle-point method of
integration or the so-called method of steepest descent.
We construct a generating function G(NV, z) for the quantity I'(eV, U):

G(N,z) = Z TN, U)zVU (16)
U=0
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which, in view of equation (15) and the second of the restrictive conditions (1), may be
written as

oo

GV, =) Z/ﬁ (w02%)"™ (cr2#)" .| (17)

U=0 [ {nr}

It is easy to see that the summation over doubly restricted sets {n,}, followed by a summa-
tion over all possible values of U, is equivalent to a summation over singly restricted sets
{n,}, namely the ones that satisfy only one condition: ) . n, = V. Expression (17) can be
evaluated with the help of the multinomial theorem, with the result

N
G(N,2) = (a)()ZEO +a)1zEl _|_)

= (@)1, say. (18)

Now, if we suppose that the E, (and hence the total energy value & = N U) are all integers,
then, by (16), the quantity I'(«V, U) is simply the coefficient of zVU in the expansion of the
function G(eV,z) as a power series in z. It can, therefore, be evaluated by the method of
residues in the complex z-plane.

To make this plan work, we assume to have chosen, right at the outset, a unit of energy
so small that, to any desired degree of accuracy, we can regard the energies E; (and the pre-
scribed total energy &/ U) as integral multiples of this unit. In terms of this unit, any energy
value we come across will be an integer. We further assume, without loss of generality, that
the sequence Ey, Ey, . .. is a nondecreasing sequence, with no common divisor;® also, for the
sake of simplicity, we assume that Eyg = 0.* The solution now is

N
rv. oy~ L U@

oni e (19

where the integration is carried along any closed contour around the origin; of course, we
must stay within the circle of convergence of the function f(z), so that a need for analytic
continuation does not arise.

First of all, we examine the behavior of the integrand as we proceed from the origin
along the real positive axis, remembering that all our w, are virtually equal to unity and
that 0 =Ep < E; < E,---. We find that the factor [f (2)]V starts from the value 1 at z=0,
increases monotonically and tends to infinity as z approaches the circle of convergence of
f(2), wherever that may be. The factor z~*¥U+D on the other hand, starts from a positive,
infinite value at z = 0 and decreases monotonically as z increases. Moreover, the relative
rate of increase of the factor [f(z)]*V itself increases monotonically while the relative rate

3Actually, this is not a serious restriction at all, for a common divisor, if any, can be removed by selecting the unit of
energy correspondingly larger.

4This too is not serious, for by doing so we are merely shifting the zero of the energy scale; the mean energy U then
becomes U — Ej, but we can agree to call it U again.
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of decrease of the factor z~*¥U+D decreases monotonically. Under these circumstances,
the integrand must exhibit a minimum (and no other extremum) at some value of z, say
Xp, within the circle of convergence. And, in view of the largeness of the numbers & and
N U, this minimum may indeed be very steep!

Thus, at z=xp the first derivative of the integrand must vanish, while the second
derivative must be positive and, hopefully, very large. Accordingly, if we proceed through
the point z = xp in a direction orthogonal to the real axis, the integrand must exhibit an
equally steep maximum.® Thus, in the complex z-plane, as we move along the real axis
our integrand shows a minimum at z = xy, whereas if we move along a path parallel to
the imaginary axis but passing through the point z = x, the integrand shows a maximum
there. It is natural to call the point xy a saddle point; see Figure 3.2. For the contour of
integration we choose a circle, with center at z = 0 and radius equal to xy, hoping that on
integration along this contour only the immediate neighborhood of the sharp maximum
at the point xo will make the most dominant contribution to the value of the integral.®

To carry out the integration we first locate the point x. For this we write our integrand
as

N
% = exp[N g(2)], 20)
where
g(@) =Inf(z) — <U+ %)lnz, (21)
lexp{Ng(2)}l

/‘/_ : » Re z

0 Xo
™ Contour of integration

FIGURE 3.2 The saddle point.

5This can be seen by noting that (i) an analytic function must possess a unique derivative everywhere (so, in our case,
it must be zero, irrespective of the direction in which we pass through the point xp), and (ii) by the Cauchy-Riemann
conditions of analyticity, the second derivative of the function with respect to y must be equal and opposite to the second
derivative with respect to x.

51t is indeed true that, for large N, the contribution from the rest of the circle is negligible. The intuitive reason for this
is that the terms (w,z%"), which constitute the function f(z), “reinforce” one another only at the point z = xo; elsewhere,
there is bound to be disagreement among their phases, so that at all other points along the circle, |f(2)| < f(x0). Now, the
factor that actually governs the relative contributions is [|f(2)|/f (x0)]?; for & > 1, this will clearly be negligible. For a
rigorous demonstration of this point, see Schrodinger (1960, pp. 31-33).
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while

fz) = ZwrzE’. (22)

The number xj is then determined by the equation

_fo) NUHL

f(x0) N Xo (3)

g (%)

which, in view of the fact that & U > 1, can be written as

E;
flag OB

U~ = .
OF@) T Y o

(24)

We further have

g//(x )= f//(xO) _ [f/(xO)]z NU+1
P\ Ta T @) T T
N f//(xo) B Uz _ U
f(x0) x3

(25)

It will be noted here that, in the limit & — oo and & (= N U) — oo, with U staying constant,
the number xy and the quantity g”(xp) become independent of V.

Expanding g(z) about the point z = xo, along the direction of integration, that is, along
the line z = xy + iy, we have

1
8(2) = g(xg) — 5g”(xo)y2 RPN

accordingly, the integrand (20) might be approximated as

N N
s 55‘2,)11 exp [—Tg”(xo)yz}. (26)
%o

Equation (19) then gives

1 NoT N, ,
C(N,U) ~ 2] [i(‘:’j(l)])‘]*l / exp [—7g/ (xo)yz] idy

_ feoI 1

= . , 27
g UFL (2m v g (x0)) 12 e

which gives

1 1 1 ,
Wlnl"(e/\/', U) ={Inf(xp) — Ulnxp} — Wlnxo - mln{ZmN’g (x0)}. (28)
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In the limit & — oo (with U staying constant), the last two terms in this expression tend
to zero, with the result

%lnF(W,U) =Inf(xp) — Ulnxp. (29)
Substituting for f(xp) and introducing a new variable 8, defined by the relationship
Xo = exp(—p), 30)

we get
1
WlnF(aV,U) =ln{ Er wrexp(—ﬂEr)} +BU. 31)

The expectation value of the number 7, then follows from (14) and (31):

> wrErexp(—BEr) 96
7
B Za)r eXp(_ﬁEr) + u or 86(),‘ ) (32)
r all op=1

(ny) | owrexp(—BEr) n
N | Y wrexp(—BEy)

The term inside the curly brackets vanishes identically because of (24) and (30). It has been
included here to emphasize the fact that, for a fixed value of U, the number (= —Inxp) in
fact depends on the choice of the w;; see (24). We will appreciate the importance of this
fact when we evaluate the mean square fluctuation in the number 7,; in the calculation of
the expectation value of n,, this does not really matter. We thus obtain

(nr): exp(—BEy)
N T Y exp(—pE)’

(33)

which is identical to expression (10) for n}/-V. The physical significance of the parameter
B is also the same as in that expression, for it is determined by equation (24), with all w, = 1,
that is, by equation (11) which fits naturally with equation (33) because U is nothing but
the ensemble average of the variable E;:

1
U=> EP = ~ > Er(ny). (34)
r r

Finally, we compute fluctuations in the values of the numbers n,. We have, first of all,

"n?Win
(,,z>=m2r>r{’}_1<w DY ()| 5)
Ty Wiy T\ 0w )\ d0r ) g wper
{nr}
see equations (12) to (14). It follows that
2 2 2 2 9 Y
((Anp)7) = ({nr = (n))7) = (ny) — (ny)* = (wrf) (wrf)lnr (36)
dor dor all wp=1
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Substituting from (31) and making use of (32), we get

(An)?) _ 9 | orexp(—pEp)
N ’ dwr

- Y wrexp(—BEy)
-

> wrErexp(—BEy) 98
-
B RN ' 57
r all wp=1

We note that the term in the curly brackets would not make any contribution because it
is identically zero, whatever the choice of the »,. However, in the differentiation of the first
term, we must not forget to take into account the implicit dependence of g on the wy,
which arises from the fact that unless the w, are set equal to unity the relation determining
B does contain w;; see equations (24) and (30), whereby

>_wrErexp(—BEy)
=L 38
> wrexp(—BEy) (38)
r all wr=1
A straightforward calculation gives
B E—-U (ny)
—_— = — . 39
<8wr>U all o;=1 (Er2> Uz N 49
We can now evaluate (37), with the result
2 2
((Anp)7) _ (nr) ((m)) n mr)(U—Er) (ﬁ)
N N N N dor J ylan wy=1
_ {nn) [1 () () (Er=U)2 } , (40)
N N N ((Er—U)?)

For the relative fluctuation in n,, we get

An\2 1 1 (Ey — U)?
- S § T A 41
<<<nr>>> (ny) uv{ <(Er—U)2>} @b

As N — o0, (n;) also — oo, with the result that the relative fluctuations in 7, tend to zero;
accordingly, the canonical distribution becomes infinitely sharp and with it the mean
value, the most probable value — in fact, any values of n, that appear with nonvanish-
ing probability — become essentially the same. And that is the reason why two wildly
different methods of obtaining the canonical distribution followed in this section have led
to identical results.
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3.3 Physical significance of the various statistical
quantities in the canonical ensemble
We start with the canonical distribution

P = (ny)  exp(—BEy) )

N Y exp(—BE)’

where 8 is determined by the equation

> Erexp(—BEy) 5
—_— r —_— e J—
U= S op( PR - In {Zexp( ﬂEr)} ) 2
r

We now look for a general recipe to extract information about the various macroscopic
properties of the given system on the basis of the foregoing statistical results. For this,
we recall certain thermodynamic relationships involving the Helmholtz free energy
A(= U — TS), namely

dA=dU — TdS — SAT = —SdT — PdV + ndN, 3)
Y dA 3A
5=‘<ﬁ)w’ P*(W)W “=(W)V,T’ @
and
3A 3 (A d(A/T)
U=A+TS=A-T| — =—T2[—<7)] =[ ] , (5)
<8T>N,V AaT\T)yy  Lo(/T) Iny

where the various symbols have their usual meanings. Comparing (5) with (2), we infer that
there exists a close correspondence between the quantities entering through the statistical
treatment and the ones coming from thermodynamics, namely

1 A
ﬂ:ﬁ’ ln{Xr:eXp(_ﬁEr)} :_ﬁ! (6)

where k is a universal constant yet to be determined; soon we shall see that k is indeed the
Boltzmann constant.

The equations in (6) constitute the most fundamental result of the canonical ensemble
theory. Customarily, we write it in the form

A(N,V,T)=—-kTInQn(V,T), (7)
where

Qn(V,T) = exp(—E/kT). (8)
r
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The quantity Qn(V, T) is referred to as the partition function of the system; sometimes it
is also called the “sum-over-states” (German: Zustandssumme). The dependence of Q on
T is quite obvious. The dependence on N and V comes through the energy eigenvalues
E;; in fact, any other parameters that might govern the values E, should also appear in the
argument of Q. Moreover, for the quantity A(N,V,T) to be an extensive property of the
system, In Q must also be an extensive quantity.

Once the Helmholtz free energy is known, the rest of the thermodynamic quantities
follow straightforwardly. While the entropy, the pressure and the chemical potential are
obtained from formulae (4), the specific heat at constant volume follows from

au 9%A
cr=(57) Z_T(29T2> ©
NV NV

and the Gibbs free energy from

G:A+PV:A—V<%> :N<%> =Ny; (10)
V)N v,T
see Problem 3.5.

At this stage it appears worthwhile to make a few remarks on the foregoing results. First
of all, we note from equations (4) and (6) that the pressure P is given by

9% exp(~BEy)
b= eppE) an
2

so that

PdV = — ZP,dE, =—dU. (12)
r

The quantity on the right side of this equation is clearly the change in the average energy
of a system (in the ensemble) during a process that alters the energy levels E;, leaving the
probabilities P unchanged. The left side then tells us that the volume change dV provides
an example of such a process, and the pressure P is the “force” accompanying that process.
The quantity P, which was introduced here through the thermodynamic relationship (3),
thus acquires a mechanical meaning as well.

The entropy of the system is determined as follows. Since P, = Q™! exp(—E;),

(InPr)=—-InQ— B(E;) = BA—-U) =-S/k,
with the result that

S=—ki{lnP;)=—-k» P/InP;. (13)
r
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This is an extremely interesting relationship, for it shows that the entropy of a physical sys-
tem is solely and completely determined by the probability values P, (of the system being
in different dynamical states accessible to it)!

From the very look of it, equation (13) appears to be of fundamental importance;
indeed, it reveals a number of interesting conclusions. One of these relates to a system
in its ground state (T = 0K). If the ground state is unique, then the system is sure to be
found in this particular state and in no other; consequently, P; is equal to 1 for this state
and 0 for all others. Equation (13) then tells us that the entropy of the system is precisely
zero, which is essentially the content of the Nernst heat theorem or the third law of ther-
modynamics.” We also infer that vanishing entropy and perfect statistical order (which
implies complete predictability about the system) go together. As the number of acces-
sible states increases, more and more of the P, become nonzero; the entropy of the system
thereby increases. As the number of states becomes exceedingly large, most of the P-
values become exceedingly small (and their logarithms assume large, negative values); the
net result is that the entropy becomes exceedingly large. Thus, the largeness of entropy
and the high degree of statistical disorder (or unpredictability) in the system also go
hand in hand.

It is because of this fundamental connection between entropy on one hand and lack of
information on the other that equation (13) became the starting point of the pioneering
work of Shannon (1948, 1949) in the development of the theory of communication.

It may be pointed out that formula (13) applies in the microcanonical ensemble as well.
There, for each member system of the ensemble, we have a group of  states, all equally
likely to occur. The value of P; is, then, 1/Q for each of these states and 0 for all others.
Consequently,

Q
S=—k2{éln<é)} =klnQ, (14)
r=1

which is precisely the central result in the microcanonical ensemble theory; see equa-
tion (1.2.6) or (2.3.6).

3.4 Alternative expressions for the partition function

In most physical cases the energy levels accessible to a system are degenerate, that is, one
has a group of states, g; in number, all belonging to the same energy value E;. In such cases
it is more useful to write the partition function (3.3.8) as

Qn(V,T) = giexp(—BEy); (1)

70f course, if the ground state of the system is degenerate (with a multiplicity €o), then the ground-state entropy is
nonzero and is given by the expression k Inp; see equation (14).
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the corresponding expression for P;, the probability that the system be in a state with
energy E;, would be

__8iexp(=BE) ©
" X giexp(—BE)
L

Clearly, the g; states with a common energy E; are all equally likely to occur. As a result,
the probability of a system having energy E; becomes proportional to the multiplicity g; of
this level; g; thus plays the role of a “weight factor” for the level E;. The actual probability is
then determined by the weight factor g; as well as by the Boltzmann factor exp(—g8E;) of the
level, as we have in (2). The basic relations established in the preceding section, however,
remain unaffected.

Now, in view of the largeness of the number of particles constituting a given system and
the largeness of the volume to which these particles are confined, the consecutive energy
values E; of the system are, in general, very close to one another. Accordingly, there lie,
within any reasonable interval of energy (E, E + dE), a very large number of energy levels.
One may then regard E as a continuous variable and write P(E)dE for the probability that
the given system, as a member of the canonical ensemble, may have its energy in the range
(E,E + dE). Clearly, this probability will be given by the product of the relevant single-state
probability and the number of energy states lying in the specified range. Denoting the
latter by g(E)dE, where g(E) denotes the density of states around the energy value E, we
have

P(E)dE x exp(—BE)g(E)dE 3)

which, on normalization, becomes

exp(—BE)g(E)dE

[ exp(—BE)g(E)dE
0

P(E)dE = 4)

The denominator here is yet another expression for the partition function of the system:

(o]

QN (V,T) = f ¢ PEg(E)dE. 5)
0

The expression for (f), the expectation value of a physical quantity f, may now be
written as

S f(Engie Pt [ f(E)e PE(E)dE
[ 0

H=) iPi="—w—— > ~= : (6)
i ;g,e - [ e PEg(E)dE
0
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Before proceeding further, we take a closer look at equation (5) and note that, with
B > 0, the partition function Q(p) is just the Laplace transform of the density of states g(E).
We may, therefore, write g(E) as the inverse Laplace transform of Q(8):

B’ +ico
1
gB = 5 f SPEQBYAB (B > 0) @)
Tl
B/ —ioco
=5 [ e i, ®
2

where B is now treated as a complex variable, g’ +i8”, while the path of integration
runs parallel to, and to the right of, the imaginary axis, that is, along the straight line
Re 8 = B’ > 0. Of course, the path may be continuously deformed so long as the integral
converges.

3.5 The classical systems

The theory developed in the preceding sections is of very general applicability. It applies to
systems in which quantum-mechanical effects are important as well as to those that can
be treated classically. In the latter case, our formalism may be written in the language of the
phase space; as a result, the summations over quantum states get replaced by integrations
over phase space.

We recall the concepts developed in Sections 2.1 and 2.2, especially formula (2.1.3) for
the ensemble average (f) of a physical quantity f(q, p), namely

_ [f@.ppqpaNqdNp

= , 1
ek [ r(a,pd3Nqd*Np M

where p(q, p) denotes the density of the representative points (of the systems) in the phase
space; we have omitted here the explicit dependence of the function p on time ¢ because
we are interested in the study of equilibrium situations only. Evidently, the function p(q, p)
is a measure of the probability of finding a representative point in the vicinity of the phase
point (g, p), which in turn depends on the corresponding value H(q, p) of the Hamiltonian
of the system. In the canonical ensemble,

r(q,p) x exp{—pH(q, p)}; 2
compare to equation (3.1.6). The expression for (f) then takes the form

[f(q,p)exp(—H)dw
Jexp(—BH)dw

(= , 3)
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where dow (= d®*Nqd®N p) denotes a volume element of the phase space. The denomina-
tor of this expression is directly related to the partition function of the system. However,
to write the precise expression for the latter, we must take into account the relationship
between a volume element in the phase space and the corresponding number of distinct
quantum states of the system. This relationship was established in Sections 2.4 and 2.5,
whereby an element of volume dw in the phase space corresponds to

dw

N!h3N @

distinct quantum states of the system.? The appropriate expression for the partition
function would, therefore, be

Qu(V,T) = / e FH@D) gy 5

1
N3N
it is understood that the integration in (5) goes over the whole of the phase space.

As our first application of this formulation, we consider the example of an ideal gas.
Here, we have a system of N identical molecules, assumed to be monatomic (so there are
no internal degrees of motion to be considered), confined to a space of volume V and in
equilibrium at temperature 7. Since there are no intermolecular interactions to be taken
into account, the energy of the system is wholly kinetic:

N
H(g,p) =) _(p}/2m). 6)

i=1

The partition function of the system would then be

N

1 _ 2

Qv(V,T) = NI/BN /e (premip; n(dSQidspi)- (7)
’ i=1

Integrations over the space coordinates are rather trivial; they yield a factor of V. Integra-
tions over the momentum coordinates are also quite easy, once we note that integral (7) is
simply a product of N identical integrals. Thus, we get

N

N o0
2
On(V,T) = N3N /'eip /2mkT (47Tp2dp> 8)
0
1]V N
=i [m(ankT)g‘/Z} ; )]

8Ample justification has already been given for the factor h3N. The factor N! comes from the considerations of
Sections 1.5 and 1.6; it arises essentially from the fact that the particles constituting the given system are not only
identical but, in fact, indistinguishable. For a complete proof of this result, see Section 5.5.
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here, use has been made of equation (B.13a). The Helmholtz free energy is then given by,
using Stirling’s formula (B.29),

N h2 3/2
AWN,V,T)=—kTInQn(V,T) = NkT | In v <271ka) -1 (10)

The foregoing result is identical to equation (1.5.8), which was obtained by following a very
different procedure. The simplicity of the present approach is, however, striking. Needless
to say, the complete thermodynamics of the ideal gas can be derived from equation (10) in
a straightforward manner. For instance,

5 3/2
l,LE(%) =kTIn g 7}1 , 11)
N )y 1 V \ 27 mkT
:_<%> _ NkT (12)
- \ov)yr  V
and
9A V /2zmkT\*?] 5

N e 15 B

These results are identical to the ones derived previously, namely (1.5.7), (1.4.2), and
(1.5.1a), respectively. In fact, the identification of formula (12) with the ideal-gas law,
PV =nRT, establishes the identity of the (hitherto undetermined) constant k as the
Boltzmann constant; see equation (3.3.6). We further obtain

UE—[i(an)} =_T2 [i (é)] =A+ TS=§NkT, (14)
Er NV 2

B aT\T
and so on.
At this stage we have an important remark to make. Looking at the form of equation (8)
and the manner in which it came about, we may write

1
vV, T) = 51V, v, (15)

where Q;(V, T) may be regarded as the partition function of a single molecule in the sys-
tem. A little reflection will show that this result obtains essentially from the fact that the
basic constituents of our system are noninteracting (and hence the total energy of the
system is simply the sum of their individual energies). Clearly, the situation will not be
altered even if the molecules in the system had internal degrees of motion as well. What
is essentially required for equation (15) to be valid is the absence of interactions among
the basic constituents of the system (and, of course, the absence of quantum-mechanical
correlations).
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Going back to the ideal gas, we could as well have started with the density of states g(E).
From equation (1.4.17), and in view of the Gibbs correction factor, we have

a
8(E) =

N
1 ( V) (2w m)3N/2 3BN/2)-1 16
oF N' )

) {(BN/2)—1}!

Substituting this into equation (3.4.5), and noting that the integral involved is equal to
{(3N/2) —1}!/B3N/2 we obtain

1/V 2 3N/2
Qv(p) = (hg) (”Tm) : a7)

which is identical to (9). It may also be noted that if one starts with the single-particle
density of states (2.4.7), namely

27V
a(e) ~ "= 2m)32e1/2, (18)
13
computes the single-particle partition function,

v

Q(B) = / e Pea(e)de = — (
0

2 3/2
Lm) , 19)

hs B

and then makes use of formula (15), one would arrive at the same result for Qn(V, T).
Lastly, we consider the question of determining the density of states, g(E), from

the expression for the partition function, Q(8) — assuming that the latter is already

known; indeed, expression (9) for Q(8) was derived without making use of any knowledge

regarding the function g(E). According to equation (3.4.7) and (9), we have

B’ +ico
VN /2 Nz ePE
g(E) = (’,Z” ) ~ ﬂsN/Zdﬁ 8 >0). 20)
/S’ ico

Noting that, for all positive #,

1 §'ioo &5t %’,l for x>0
= C ds= @n?
2mi s for x<0
§'—ioco -
equation (20) becomes
VN /27m\3N/2  EGN/2)-1
—_— for E>0
gE)=1 N!' \ h? {(3N/2) —1}! (22)
0 for E<O,

9For the details of this evaluation, see Kubo (1965, pp. 165-168).
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which is indeed the correct result for the density of states of an ideal gas; compare to
equation (16). The foregoing derivation may not appear particularly valuable because in
the present case we already knew the expression for g(E). However, cases do arise where
the evaluation of the partition function of a given system and the consequent evaluation of
its density of states turn out to be quite simple, whereas a direct evaluation of the density
of states from first principles is rather involved. In such cases, the method given here can
indeed be useful; see, for example, Problem 3.15 in comparison with Problems 1.7 and 2.8.

3.6 Energy fluctuations in the canonical ensemble:
correspondence with the microcanonical

ensemble

In the canonical ensemble, a system can have energy anywhere between zero and infinity.
On the other hand, the energy of a system in the microcanonical ensemble is restricted
to a very narrow range. How, then, can we assert that the thermodynamic properties of a
system derived through the formalism of the canonical ensemble would be the same as
the ones derived through the formalism of the microcanonical ensemble? Of course, we
do expect that the two formalisms yield identical results, for otherwise our whole scheme
would be marred by internal inconsistency. And, indeed, in the case of an ideal classical
gas the results obtained by following one approach were precisely the same as the ones
obtained by following the other approach. What, then, is the underlying reason for this
equivalence?

The answer to this question is obtained by examining the extent of the range over which
the energies of the systems in the canonical ensemble have a significant probability to
spread; that will tell us the extent to which the canonical ensemble really differs from the
microcanonical one. To explore this point, we write down the expression for the mean
energy

> Erexp(—BEy)
—

U -r
>_exp(—BEy)

(E) @

and differentiate it with respect to the parameter g, holding the energy values E, constant.
We obtain

2
oU ZE,Z exp(—BE;) [Xr:Er eXp(—ﬂEr)]
9B~ Lexp(—pEp

2
[Z eXp(—ﬁEr)]
~
= —(E%) +(B)?, @
from which it follows that

oy _ 2y 2 (U _ e (U _ o
((AE)?) = (E7) —(E)" = <3ﬂ)_kT <3T>_kT Cv. @)
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Note that we have here the specific heat at constant volume, because the partial differen-
tiation in (2) was carried out with the E; kept constant! For the relative root-mean-square
fluctuation in E, equation (3) gives

JUAB?)] _ JKT*Cy)

) T 4)

which is O(N~1/2), N being the number of particles in the system. Consequently, for large
N (which is true for every statistical system) the relative r.m.s. fluctuation in the values of E
is quite negligible! Thus, for all practical purposes, a system in the canonical ensemble has
an energy equal to, or almost equal to, the mean energy U; the situation in this ensemble
is, therefore, practically the same as in the microcanonical ensemble. That explains why
the two ensembles lead to practically identical results.

For further understanding of the situation, we consider the manner in which energy is
distributed among the various members of the (canonical) ensemble. To do this, we treat
E as a continuous variable and start with expression (3.4.3), namely

P(E)dE x exp(—BE)g(E)dE. (3.4.3)

The probability density P(E) is given by the product of two factors: (i) the Boltzmann factor,
which monotonically decreases with E, and (ii) the density of states, which monotonically
increases with E. The product, therefore, has an extremum at some value of E, say E*.!°
The value E* is determined by the condition

a
— (e PEg(E ' =0,
spte " 8( )}E:E*

that is, by

dlng(E) .

TOE gy ©
Recalling that

_ daS(E) 1
S=klng and <7BE )E:U == kB,
the foregoing condition implies that
E*=U. (6)

This is a very interesting result, for it shows that, irrespective of the physical nature of
the given system, the most probable value of its energy is identical to its mean value.
Accordingly, if it is advantageous, we may use one instead of the other.

19Subsequently we shall see that this extremum is actually a maximum — and an extremely sharp one at that.
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We now expand the logarithm of the probability density P(E) around the value E* ~ U;
we get

S\ 1 92
—BE N c - —BE _%....
ln[e g(E)]_< BU + k>+28E21n[e g(E)}E_U(E U2+
_— — —_ 1 — 2 e
=—-pU-TS) 2kTZCV(E Uy>+---, (7)
from which we obtain
—BE g7y ~ p—B(U—TS) _(E-U)Y
P(E) xe "Fg(E)~e exp{ 2kT2Cy [ 8)

This is a Gaussian distribution in E, with mean value U and dispersion ,/(kT?Cy); compare
with equation (3). In terms of the reduced variable E/ U, the distribution is again Gaussian,
with mean value unity and dispersion /(kT?Cy)/U {which is O(N~1/2)}; thus, for N > 1,
we have an extremely sharp distribution which, as N — oo, approaches a delta-function!

It would be instructive here to consider once again the case of a classical ideal gas.
Here, g(E) is proportional to E©®N/2~D and hence increases very fast with E; the factor
e PE, of course, decreases with E. The product g(E)exp(—BE) exhibits a maximum at
E* = (3N/2 —1)p~!, which is practically the same as the mean value U = (3N/2)8~!. For
values of E significantly different from E*, the product essentially vanishes (for smaller val-
ues of E, due to the relative paucity of the available energy states; for larger values of E, due
to the relative depletion caused by the Boltzmann factor). The overall picture is shown in
Figure 3.3 where we have displayed the actual behavior of these functions in the special
case N = 10. The most probable value of E is now % of the mean value; so, the distribution
is somewhat asymmetrical. The effective width A can be readily calculated from (3) and
turns out to be (2/3N)'/2U, which, for N = 10, is about a quarter of U. We can see that,
as N becomes large, both E* and U increase (essentially linearly with N), the ratio E*/U
approaches unity and the distribution tends to become symmetrical about E*. At the same
time, the width A increases (but only as N 1/2). considered in the relative sense, it tends to
vanish (as N~1/2),

We finally look at the partition function Qn(V, T), as given by equation (3.4.5), with its
integrand replaced by (8). We have

o0
Qn(V,T) :e*WU*TS)/ef(E7U>2/2kT2chE
0

~ e PU=TS) s2kT?Cy) / e dx

—00

=e PV J@2nkT?Cy),
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1.0

g(E)ePE —b
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FIGURE 3.3 The actual behavior of the functions g(E), e #¥, and g(E)e #F for an ideal gas, with N = 10. The
numerical values of the functions have been expressed as fractions of their respective values at E = U.

so that
—kTInQn(V,T)=A>~ U -1TS) — %len(ZﬂszCV). 9

The last term, being O(InN), is negligible in comparison with the other terms, which are
all O(N). Hence,

A~ U-T8S. (10)

Note that the quantity A in this formula has come through the formalism of the
canonical ensemble, while the quantity S has come through a definition belonging to
the microcanonical ensemble. The fact that we finally end up with a consistent thermo-

dynamic relationship establishes beyond doubt that these two approaches are, for all
practical purposes, identical.

3.7 Two theorems — the “equipartition”
and the “virial”

To derive these theorems, we determine the expectation value of the quantity
x;(dH /3x;), where H(q,p) is the Hamiltonian of the system (assumed classical) while x;
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and x; are any two of the 6N generalized coordinates (g, p). In the canonical ensemble,

JOH ) ,—BH
LAY /(xlaxf)—edw (dw:df‘quWp) )
’axj fePHdw ’

Let us consider the integral in the numerator. Integrating over x; by parts, it becomes

1 G2 ax;
/[—7xi€_ﬂH +*/ i e_ﬁde]' da)(j);
B (i p 9x;

here, (xj)1 and (x;), are the “extreme” values of the coordinate x;, while dw ;) denotes “dw
devoid of dx;.” The integrated part here vanishes because whenever any of the coordinates
takes an “extreme” value the Hamiltonian of the system becomes infinite.!! In the integral
that remains, the factor dx;/dx;, being equal to §;;, comes out of the integral sign and we
are left with

1
75,']' / e PHgy.
B
Substituting this into (1), we arrive at the remarkable result:

oH

which is independent of the precise form of the function H.
In the special case x; = x; = p;, equation (2) takes the form

oH .
i— ) = (pidi) = kT, ®)
<P 3Pi> (Pi4gi)
while for x; = x; = g;, it becomes
oH .
<qi877,-> = —(qip;) =kT. (4)

Adding over all i, from i = 1 to 3N, we obtain

oH .
<Zpia> = <Zpi6/i> = 3NkT 5)
i Opi i

UFor instance, if x;j is a space coordinate, then its extreme values will correspond to “locations at the walls of the con-
tainer”; accordingly, the potential energy of the system would become infinite. If, on the other hand, x; is a momentum
coordinate, then its extreme values will themselves be o0, in which case the kinetic energy of the system would become
infinite.
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and
oH .
(o=~ {pam) -

Now, in many physical situations the Hamiltonian of the system happens to be a quadratic
function of its coordinates; so, through a canonical transformation, it can be brought into
the form

H=Y) AP+ B;Q}, )
i i

where P; and Q; are the transformed, canonically conjugate, coordinates while A; and B;
are certain constants of the problem. For such a system, we clearly have

oH oH
Z(Pjapj+Qjan>=2H, 8)

accordingly, by equations (3) and (4),
1
(H) = S fT, 9

where f is the number of nonvanishing coefficients in expression (7). We, therefore, con-
clude that each harmonic term in the (transformed) Hamiltonian makes a contribution
of %kT toward the internal energy of the system and, hence, a contribution of %k toward
the specific heat Cy. This result embodies the classical theorem of equipartition of energy
(among the various degrees of freedom of the system). It may be mentioned here that,
for the distribution of kinetic energy alone, the equipartition theorem was first stated by
Boltzmann (1871).

In our subsequent study we shall find that the equipartition theorem as stated here is
not always valid; it applies only when the relevant degrees of freedom can be freely excited.
At a given temperature T, there may be certain degrees of freedom which, due to the insuf-
ficiency of the energy available, are more or less “frozen” due to quantum mechanical
effects. Such degrees of freedom do not make a significant contribution toward the inter-
nal energy of the system or toward its specific heat; see, for example, Sections 6.5, 7.4,
and 8.3. Of course, the higher the temperature of the system the better the validity of this
theorem.

We now consider the implications of formula (6). First of all, we note that this formula
embodies the so-called virial theorem of Clausius (1870) for the quantity () ; g;p;), which is
the expectation value of the sum of the products of the coordinates of the various particles
in the system and the respective forces acting on them; this quantity is generally referred to
as the virial of the system and is denoted by the symbol V. The virial theorem then states



64 Chapter 3 ® The Canonical Ensemble

that
Y = —3NkT. (10)

The relationship between the virial and other physical quantities of the system is best
understood by first looking at a classical gas of noninteracting particles. In this case, the
only forces that come into play are the ones arising from the walls of the container; these
forces can be designated by an external pressure P that acts on the system by virtue of
the fact that it is bounded by the walls of the container. Consequently, we have here a force
—PdS associated with an element of area dS of the walls; the negative sign appears because
the force is directed inward while the vector dS is directed outward. The virial of the gas is
then given by

Vo= (Z%ﬂ) = —P7§r- das, (ant?
i 0 S

where r is the position vector of a particle that happens to be in the (close) vicinity of
the surface element dS; accordingly, r may be considered to be the position vector of the
surface element itself. By the divergence theorem, equation (11) becomes

Vo= —P/(div rdV =—-3PV. (12)
v

Comparing (12) with (10), we obtain the well-known result:
PV = NkT. (13)

The internal energy of the gas, which in this case is wholly kinetic, follows from the
equipartition theorem (9) and is equal to %NkT, 3N being the number of degrees of
freedom. Comparing this result with (10), we obtain the classical relationship

vV =-2K, (14)

where K denotes the average kinetic energy of the system.

It is straightforward to apply this theorem to a system of particles interacting through
a two-body potential u(r). In the thermodynamic limit, the pressure of a d-dimensional
system depends only on the virial terms arising from the forces between pairs of particles:

P 1 I U du(ry)
nkT—1+W<ZF(’WU>—I‘Nm<2 oy r”>' "

i<j i<j

121t will be noted that the summation over the various particles of the system, which appears in the definition of the
virial, has been replaced by an integration over the surface of the container, for the simple reason that no contribution
to the virial arises from the interior of the container.
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Equation (15) is called the virial equation of state. This equation can also be written in
terms of the pair correlation function, equation (10.7.11), and is also used in computer
simulations to determine the pressure of the system; see Problem 3.14, Section 10.7, and
Section 16.4.

3.8 A system of harmonic oscillators

We shall now examine a system of N, practically independent, harmonic oscillators. This
study will not only provide an interesting illustration of the canonical ensemble formu-
lation but will also serve as a basis for some of our subsequent studies in this text. Two
important problems in this line are (i) the theory of the black-body radiation (or the “sta-
tistical mechanics of photons”) and (ii) the theory of lattice vibrations (or the “statistical
mechanics of phonons”); see Sections 7.3 and 7.4 for details.

We start with the specialized situation when the oscillators can be treated classically.
The Hamiltonian of any one of them (assumed to be one-dimensional) is then given by

1 1 .
H(ﬂi,pi)ngw2q§+%p§ (i=1,...,N). 1)

For the single-oscillator partition function, we readily obtain
i 1 1 dqd
_ gL, 22 1 o\|aqap
@)= [ [ewf-n(Gmae+ )|
—00 —00

_1< 2 )”2(2m>“2_1_kT @
" h \ Bme? B T Bhow ko’

where /i = h/27. This represents a classical counting of the average number of accessible
microstates — that is, kT divided by the quantum harmonic oscillator energy spacing. The
partition function of the N-oscillator system would then be

kT\N
QnB) = QBN = (Bho)™N = (—) ; (3)

hw
note that in writing (3) we have assumed the oscillators to be distinguishable. This is so
because, as we shall see later, these oscillators are merely a representation of the energy
levels available in the system; they are not particles (or even “quasiparticles”). It is actu-
ally photons in one case and phonons in the other, which distribute themselves over the
various oscillator levels, that are indistinguishable!
The Helmholtz free energy of the system is now given by
hw

A=—kTInQy = NkT1In (k—T>, 4)
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whereby
hw
/= kTIn (ﬁ> , (5)
P=0, (6)
S=Nk[ln<ﬂ)+l], (7)
hw
U = NkT, (8)
and
Cp=Cy = Nk. 9)

We note that the mean energy per oscillator is in complete agreement with the equiparti-
tion theorem, namely 2 x %kT, for we have here fwo independent quadratic terms in the
single-oscillator Hamiltonian.

We may determine the density of states, g(E), of this system from expression (3) for its
partition function. We have, in view of (3.4.7),

] 1 B’ +ico SE
_ L e /
8O =g | Swd @ >0,
B/ —ioco
that is,
1 ENfl
————— for E>0
N >
gp)={ Mor” V=1 (10)
0 for E<O.

To test the correctness of (10), we may calculate the entropy of the system with the help of
this formula. Taking N > 1 and making use of the Stirling approximation, we get

E
S(N,E):klng(E)~Nk|:ln<m>+l], an
which gives for the temperature of the system
T— (*LS T_E (12)
T \OE/)y Nk’

Eliminating E between these two relations, we obtain precisely our earlier result (7) for the
function S(N, T).
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We now take up the quantum-mechanical situation, according to which the energy
eigenvalues of a one-dimensional harmonic oscillator are given by

1
8n:<n+§)hw; n=0,1,2,... (13)
Accordingly, we have for the single-oscillator partition function

exp <— %ﬁhw)

_ —B(n+1/2)he __
Qp=) e = e e

n=0

1 -1
= {Zsinh(gﬁhwﬂ . (14)

The N-oscillator partition function is then given by
1 -N
Qv(B) = QAN = [2 sinh (51372@)]
ze*(N/Z)ﬂhw{l _efﬂha)}fN' (15)

For the Helmholtz free energy of the system, we get

A= NkTIn [ZSinh (%ﬁhw)] =N|:%ha)+len{1 — e_ﬂh‘”}:|, (16)
whereby
u=A/N, (17)
P=0, (18)
1 1 . 1
S =Nk[fﬂhwcoth (ﬂShw) —ln{Zsmh (ﬂﬂhw) }]
2 2 2
_ ﬁha) —Bho
_Nk[m —In{l—e }], (19)
1 1 1 hw
and

1 2 1
Cp=Cy =Nk (Eﬁhw> cosech? (Eﬁhw>

Bhw

= Nk(Bhw)? 1)

(eﬂhw _ 1)2 :

Formula (20) is especially significant, for it shows that the quantum-mechanical oscil-
lators do not obey the equipartition theorem. The mean energy per oscillator is different
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kT/hw —»

FIGURE 3.4 The mean energy (¢) of a simple harmonic oscillator as a function of temperature. 1, the Planck
oscillator; 2, the Schrédinger oscillator; and 3, the classical oscillator.

from the equipartition value kT; actually, it is always greater than kT; see curve 2 in
Figure 3.4. Only in the limit of high temperatures, where the thermal energy kT is much
larger than the energy quantum #/w, does the mean energy per oscillator tend to the
equipartition value. It should be noted here that if the zero-point energy %hw were not
present, the limiting value of the mean energy would be (kT — %hw), and not kT — we
may call such an oscillator the Planck oscillator; see curve 1 in Figure 3.4. In passing, we
observe that the specific heat (21), which is the same for the Planck oscillator as for the
Schrodinger oscillator, is temperature-dependent; moreover, it is always less than, and at
high temperatures tends to, the classical value (9).

Indeed, for kT > ho, formulae (14) through (21) go over to their classical counterparts,
namely (2) through (9), respectively.

We shall now determine the density of states g(E) of the N-oscillator system from its
partition function (15). Carrying out the binomial expansion of this expression, we have

QN(,B) = Z <N +}}:_ 1) e_ﬂ(%th-ﬁ-Rha))‘ (22)

R=0

Comparing this with the formula
Qn(B) = / gEye P dE,
0
we conclude that

g(E):Z<N+§_I>S<E—{R+;N}hw), 23)

R=0
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where §(x) denotes the Dirac delta function. Equation (23) implies that there are
(N +R—-1!/RI(N — 1)! microstates available to the system when its energy E has the dis-
crete value (R-+ %N Yhw, where R=0,1,2,..., and that no microstate is available for other
values of E. This is hardly surprising, but it is instructive to look at this result from a slightly
different point of view.

We consider the following problem that arises naturally in the microcanonical ensem-
ble theory. Given an energy E for distribution among a set of N harmonic oscillators, each
of which can be in any one of the eigenstates (13), what is the total number of distinct ways
in which the process of distribution can be carried out? Now, in view of the form of the
eigenvalues ¢, it makes sense to give away, right in the beginning, the zero-point energy
%hw to each of the N oscillators and convert the rest of it into quanta (of energy iw). Let R
be the number of these quanta; then

R= (E— %th) /hw. (24)

Clearly, R must be an integer; by implication, E must be of the form (R + %N Yhiw. The prob-
lem then reduces to determining the number of distinct ways of allotting R quanta to N
oscillators, such that an oscillator may have 0 or 1 or 2... quanta; in other words, we have
to determine the number of distinct ways of putting R indistinguishable balls into N dis-
tinguishable boxes, such that a box may receive 0 or 1 or 2...balls. A little reflection will
show that this is precisely the number of permutations that can be realized by shuffling R
balls, placed along a row, with (N — 1) partitioning lines (that divide the given space into N
boxes); see Figure 3.5. The answer clearly is

(R+N-1)!

R(N-1!’ (25)

which agrees with (23).
We can now determine the entropy of the system from the number (25). Since N > 1,
we have

S~ k{In(R+ N)!—InR! —InN!}
~ k{(R+N)In(R+N) — RInR— NInN}; (26)

FIGURE 3.5 Distributing 17 indistinguishable balls among 7 distinguishable boxes. The arrangement shown here
represents one of the 23!/17!6! distinct ways of carrying out the distribution.
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the number R is, of course, a measure of the energy E of the system; see (24). For the
temperature of the system, we obtain

1 (38 38\ 1 k (R+N k  (E+3Nho
T JoE / oR/Ny ho ho R ho E— %Nha)

E 1  exp(ho/kT)+1
N~ 2 eptha/kD =1 (28)

so that

which is identical to (20). It can be further checked that, by eliminating R between (26) and
(27), we obtain precisely the formula (19) for S(V, T). Thus, once again, we find that the
results obtained by following the microcanonical approach and the canonical approach
are the same in the thermodynamic limit.

Finally, we may consider the classical limit when E/N, the mean energy per oscillator,
is much larger than the energy quantum % w, that is, when R > N. The expression (25) may,
in that case, be replaced by

(R+N-1D)@R+N-2)...(R+1) _ RV!

N-1)! W (259)
with
R~E/ho.
The corresponding expression for the entropy turns out to be
S~ k{Nln(R/N)-I—N}%Nk{ln(i)+1}, (26a)
Nho
which gives
% - (5%53)1\/ ~ ka (27a)
so that
% ~ kT. (28a)

These results are identical to the ones derived in the classical limit earlier in this section.

3.9 The statistics of paramagnetism

Next, we study a system of N magnetic dipoles, each having a magnetic moment x. In the
presence of an external magnetic field H, the dipoles will experience a torque tending to
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align them in the direction of the field. If there were nothing else to check this tendency,
the dipoles would align themselves precisely in this direction and we would achieve
a complete magnetization of the system. In reality, however, thermal agitation in the
system offers resistance to this tendency and, in equilibrium, we obtain only a partial
magnetization. Clearly, as T — 0K, the thermal agitation becomes ineffective and the
system exhibits a complete orientation of the dipole moments, whatever the strength
of the applied field; at the other extreme, as T — oo, we approach a state of complete
randomization of the dipole moments, which implies a vanishing magnetization. At
intermediate temperatures, the situation is governed by the parameter (wH/kT).

The model adopted for this study consists of N identical, localized (and, hence, dis-
tinguishable), practically static, mutually noninteracting and freely orientable dipoles. We
consider first the case of classical dipoles that can be oriented in any direction relative to
the applied magnetic field. It is obvious that the only energy we need to consider here is
the potential energy of the dipoles that arises from the presence of the external field H and
is determined by the orientations of the dipoles with respect to the direction of the field:

E=) Ej=-) pi-H=-uH) cosb; 0
The partition function of the system is then given by

Qn(B) = [QuAIY, @

where

Qi(B) =) _exp(BuH coso). 3)
4

The mean magnetic moment M of the system will obviously be in the direction of the field
H; for its magnitude we shall have

> pcosexp(BuHcoso)
_ Y
Mz =N{ucost) =N > exp(BuH cos6)
0
N o 0A
=Eﬁan1(ﬁ)=—<ﬁ)T. (4)

Thus, to determine the degree of magnetization in the system all we have to do is to
evaluate the single-dipole partition function (3).

First, we proceed classically (after Langevin, 1905a,b). Using (sin0d6d¢) as the elemen-
tal solid angle representing a small range of orientations of the dipole, we get

2r 7w

Ql(ﬂ)://eﬁ“Hcosesin0d0d¢:4nSinh(ﬂ
00

) 5
Bull ©)



72 Chapter 3 * The Canonical Ensemble

so that

_ M 1
M= =i {Coth(ﬁMH) TMH} = puL(BuH), (6)

where L(x) is the so-called Langevin function
1
L(x) = cothx — e (7)

a plot of the Langevin function is shown in Figure 3.6. We note that the parameter SuH
denotes the strength of the (magnetic) potential energy uH compared to the (thermal)
kinetic energy kT.

If we have Ny dipoles per unit volume in the system, then the magnetization of the
system, namely the mean magnetic moment per unit volume, is given by

Mz = Noft, = NopL(x)  (x = BuH). ®

For magnetic fields so strong (or temperatures so low) that the parameter x > 1, the
function L(x) is almost equal to 1; the system then acquires a state of magnetic saturation:

w,>~u and Mz >~ Nyu. 9)

For temperatures so high (or magnetic fields so weak) that the parameter x « 1, the
function L(x) may be written as

. (10)
3 45" "

which, in the lowest approximation, gives

Nop?
M,y >~ ——H. 11
z0 3kT ( )
1.0
I /
/
/
= /
=05
V,
/
0 1 1 1
0 4 8 12
X —»

FIGURE 3.6 The Langevin function L(x).
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The high-temperature isothermal susceptibility of the system is, therefore, given by

0Mzo\ Nou? _ Cc
r 3kT T’

Xp =IIii_r>r(1)( 3l —, say. (12)

Equation (12) is the Curie law of paramagnetism, the parameter C being the Curie constant
of the system. Figure 3.7 shows a plot of the susceptibility of a powdered sample of copper—
potassium sulphate hexahydrate as a function of T~!; the fact that the plot is linear and
passes almost through the origin vindicates the Curie law for this particular salt.

We shall now treat the problem of paramagnetism quantum-mechanically. The major
modification here arises from the fact that the magnetic dipole moment x and its compo-
nent i, in the direction of the applied field cannot have arbitrary values. Quite generally,
we have a direct relationship between the magnetic moment u of a given dipole and its
angular momentum [:

e
1= (850)b (13)
with
2 2. ;135
B=JUJ+DR% J=5.5. 20 or 0,12, (14)

The quantity g(e/2mc) is the gyromagnetic ratio of the dipole while the number g is Lande’s
g-factor. If the net angular momentum of the dipole is due solely to electron spins, then

0 20 40 60 80
(10¥TinK™ 1) —»

FIGURE 3.7 x versus 1/T plot for a powdered sample of copper-potassium sulphate hexahydrate (after Hupse,
1942).
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g =2; on the other hand, if it is due solely to orbital motions, then g=1. In general,
however, its origin is mixed; g is then given by the formula
3 SS+1)—-L(L+1)

_3 , 1
8=t U+ (15

S and L being, respectively, the spin and the orbital quantum numbers of the dipole. Note
that there is no upper or lower bound on the values that g can have!
Combining (13) and (14), we can write

u?=g*usJ(J+1), (16)

where ug(= eh/2mc) is the Bohr magneton. The component i, of the magnetic moment
in the direction of the applied field is, on the other hand, given by

uz=8gugm, m=-—J,—J+1,....J-1,]J. (17)

Thus, a dipole whose magnetic moment x conforms to expression (16) can have no other
orientations with respect to the applied field except the ones conforming to the values (17)
of the component u;; obviously, the number of allowed orientations, for a given value of
J, is (2] +1). In view of this, the single-dipole partition function Q;(8) is now given by,
see (3),

]
QB = ) exp(BgugmH). (18)

m=—]

Introducing a parameter x, defined by

x=p@EgughHH, 19
equation (18) becomes

e~ X (e@+Dx/] _ 1)

J

m=—]
@AV _ g @+ Dx/2]
ex/2] _ e—x/2]

. 1 . 1
=smh{<1+§>x}/smh{2—]x}. (20)

The mean magnetic moment of the system is then given by, see equation (4),

N 9
M, =Npu, = Ea—Hanl(ﬁ)

=N J 1 ! thi(1l ! ! th ! 21)
= (gMB)[< +§)co {( —l—ﬂ)x}—ﬂco {Zx”
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Thus

Iz = (8upl)Bj(x), (22)

where Bj(x) is the Brillouin function of order J:

1 1 1 1
By(x) = (1—1—5) coth{(l—f—ﬂ)x} —ﬂcoth{jx}. (23)
In Figure 3.8 we have plotted the function B;(x) for some typical values of the quantum
number J.
We shall now consider a few special cases. First of all, we note that for strong fields and
low temperatures (x > 1), the function Bj(x) ~ 1 for all ], which corresponds to a state of

magnetic saturation. On the other hand, for high temperatures and weak fields (x « 1), the
function Bj(x) may be written as

1
§(I+1/])x+..., (24)
so that
_ (gugh? 1\ gup/U+1D)
He="3kT <1+7>H_ 3kT (25)
The Curie law, x o« 1/T, is again obeyed; however, the Curie constant is now given by
N, 2,2 1 2
C = 08 MB](]-F ) _ Nop® 26)

3k T3k’

see equation (16). It is indeed interesting that the high-temperature results, (25) and (26),
directly involve the eigenvalues of the operator ;2.

X—»

FIGURE 3.8 The Brillouin function By (x) for various values of J.
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We now look a little more closely at the dependence of the foregoing results on the
quantum number J. First of all, we consider the extreme case J — oo, with the understand-
ing that simultaneously g — 0, such that the value of y stays constant. From equation (23),
we readily observe that, in this limit, the Brillouin function B;(x) tends to become (i) inde-
pendent of J and (ii) identical to the Langevin function L(x). This is not surprising because,
in this limit, the number of allowed orientations for a magnetic dipole becomes infinitely
large, with the result that the problem essentially reduces to its classical counterpart
(where one must allow all possible orientations). At the other extreme, we have the case
J= %, which allows only two orientations. The results in this case are very different from
the ones for / > 1. We now have, with g =2,

T, = ugBi/2(x) = pgtanhx. (27)

For x > 1, u. is very nearly equal to up. For x « 1, however, i, >~ pupx, which corresponds
to the Curie constant

Nou?,
k

Cij2 = : (28)
In Figure 3.9 we reproduce the experimental values of &z, (in terms of up) as a function
of the quantity H/T, for three paramagnetic salts; the corresponding theoretical plots,
namely the curves g JBj(x), are also included in the figure. The agreement between theory
and experiment is indeed good. In passing, we note that, at a temperature of 1.3 K, a field
of about 50,000 gauss is sufficient to produce over 99 percent of saturation in these salts.

7.00

6.00

0 10 20 30 40
1073H/T gauss/K—»

FIGURE 3.9 Plots of iz, /up as a function of H/T. The solid curves represent the theoretical results, while the points
mark the experimental findings of Henry (1952). Curve | is for potassium chromium alum (] = %,g = 2), curve Il for
iron ammonia alum (J = 3,g = 2), and curve Il for gadolinium sulphate octahydrate (J = Z,g = 2).
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3.10 Thermodynamics of magnetic systems:
negative temperatures

For the purpose of this section, it will suffice to consider a system of dipoles with J = %
Each dipole then has a choice of two orientations, the corresponding energies being —upH

and +upH; let us call these energies —e and +¢, respectively. The partition function of the
system is then given by

N
Qu(p) = (¢ +¢7°) " = (2zcosh(Be)}"; M

compare to the general expression (3.9.20). Accordingly, the Helmholtz free energy of the
system is given by

A= —NkTIn{2cosh(e/kT)}, )

from which
S:—(%)H:Nk[lnPcosh(kg—T)]—%tanh(%)], 3)
U=A+TS=—Nstanh (=), @
M:—(%)T:NMBtanh(kg—T> (5)

and, finally,
o= (57, =M(p) seeh® (7)- ©

Equation (5) is essentially the same as (3.9.27); moreover, as expected, U = —MH.
The temperature dependence of the quantities S, U, M, and C is shown in Figures 3.10
through 3.13. We note that the entropy of the system is vanishingly small for kT « ¢; it rises

1.0

I e EEEEEE L
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FIGURE 3.10 The entropy of a system of magnetic dipoles (with J = 1) as a function of temperature.
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FIGURE 3.11 The energy of a system of magnetic dipoles (with J = %) as a function of temperature.
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FIGURE 3.12 The magnetization of a system of magnetic dipoles (with J = %) as a function of temperature.

rapidly when kT is of the order of ¢ and approaches the limiting value Nkln2 for kT > «.
This limiting value of S corresponds to the fact that at high temperatures the orientation
of the dipoles assumes a completely random character, with the result that the system
now has 2V equally likely microstates available to it. The energy of the system attains
its lowest value, —N¢, as T — 0K; this clearly corresponds to a state of magnetic satura-
tion and, hence, to a state of perfect order in the system. Toward high temperatures, the
energy tends to vanish,'® implying a purely random orientation of the dipoles and hence

Note that in the present study we are completely disregarding the kinetic energy of the dipoles.



3.10 Thermodynamics of magnetic systems: negative temperatures 79

1.0+
C
Nk 0.5
o 1 1 ]
0 2 4 6
KT
= —

FIGURE 3.13 The specific heat of a system of magnetic dipoles (with J = %) as a function of temperature.

a complete loss of magnetic order. These features are re-emphasized in Figure 3.12, which
depicts the temperature dependence of the magnetization M. The specific heat of the sys-
tem is vanishingly small at low temperatures but, in view of the fact that the energy of the
system tends to a constant value as T — oo, the specific heat vanishes at high tempera-
tures as well. Somewhere around T = ¢/k, it displays a maximum. Writing A for the energy
difference between the two allowed states of the dipole, the formula for the specific heat
can be written as

A\2
C = Nk <ﬁ) eA/KT (1 4 @2/KT)=2, 7)

A specific heat peak of this form is generally known as the Schottky anomaly; it is observed
in systems that have an excitation gap A above the ground state.

Now, throughout our study so far we have considered only those cases for which T > 0.
For normal systems, this is indeed essential, for otherwise we have to contend with canon-
ical distributions that blow up as the energy of the system is indefinitely increased. If,
however, the energy of a system is bounded from above, then there is no compelling reason
to exclude the possibility of negative temperatures. Such specialized situations do indeed
exist, and the system of magnetic dipoles provides a good example thereof. From equa-
tion (4), we note that, so long as U <0, T > 0 — and that is the only range we covered in
Figures 3.10 through 3.13. However, the same equation tells us that if U > 0 then T <0,
which prompts us to examine the matter a little more closely. For this, we consider the
variation of the temperature T and the entropy S with energy U, namely

1 k(U k. (Ne—U
7= tanh (m)—zln(*mu) (®)
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FIGURE 3.14 The entropy of a system of magnetic dipoles (with J = %) as a function of energy. Some values of the

parameter kT /¢ are also shown in the figure. The slope at the two endpoints diverges since both ends represent
zero temperature but it is difficult to see due to the logarithmic nature of the divergence.

and

N _Ne—f—Uln(Ns—l—U)_Ne—Uln<Ns—U); )

Nk~ 2Ne 2Ne 2Ne 2Ne

these expressions follow straightforwardly from equations (3) and (4), and are shown
graphically in Figures 3.14 and 3.15. We note that for U = —Ng, both S and T vanish.
As U increases, they too increase until we reach the special situation where U = 0. The
entropy is then seen to have attained its maximum value Nkln 2, while the temperature has
reached infinity. Throughout this range, the entropy had been a monotonically increasing
function of energy, so T was positive. Now, as U becomes 04, (dS/dU) becomes 0_ and
T becomes —oco. With a further increase in U, the entropy monotonically decreases; as a
result, the temperature continues to be negative, though its magnitude steadily decreases.
Finally, we reach the largest value of U, namely +N¢, where the entropy is once again zero
and T=0_.

The region where U > 0 (and hence T < 0) is indeed abnormal because it corresponds
to a magnetization opposite in direction to that of the applied field. Nevertheless, it can be
realized experimentally in the system of nuclear moments of a crystal in which the relax-
ation time #; for mutual interaction among nuclear spins is very small in comparison with
the relaxation time #, for interaction between the spins and the lattice. Let such a crystal
be magnetized in a strong magnetic field and then the field reversed so quickly that the
spins are unable to follow the switch-over. This will leave the system in a nonequilibrium
state, with energy higher than the new equilibrium value U. During a period of order 1,
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FIGURE 3.15 The temperature parameter kT /¢, and its reciprocal B¢, for a system of magnetic dipoles (with J = %)
as a function of energy.

the subsystem of the nuclear spins should be able to attain a state of internal equilibrium;
this state will have a negative magnetization and will, therefore, correspond to a negative
temperature. The subsystem of the lattice, which involves energy parameters that are in
principle unbounded, will still be at a positive temperature. During a period of order #,,
the two subsystems would attain a state of mutual equilibrium, which again will have a
positive temperature.'* An experiment of this kind was successfully performed by Purcell
and Pound (1951) with a crystal of LiF; in this case, r; was of order 10~° sec while #, was of
order 5 min. A state of negative temperature for the subsystem of spins was indeed attained
and was found to persist for a period of several minutes; see Figure 3.16.

Before we close this discussion, a few general remarks seem in order. First of all, we
should note that the onset of negative temperatures is possible only if there exists an upper
limit on the energy of the given system. In most physical systems this is not the case,
simply because most physical systems possess kinetic energy of motion which is obvi-
ously unbounded. By the same token, the onset of positive temperatures is related to the

“Note that in the latter process, during which the spins realign themselves (now more favorably in the new direction
of the field), the energy will flow from the subsystem of the spins to that of the lattice, and not vice versa. This is in perfect
agreement with the fact that negative temperatures are hotter than positive ones; see the subsequent discussion in the
text.
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FIGURE 3.16 A typical record of the reversed nuclear magnetization (after Purcell and Pound, 1951). On the left we
have a deflection corresponding to normal, equilibrium magnetization (T ~ 300K); it is followed by the reversed
deflection (corresponding to T ~ —350K), which decays through zero deflection (corresponding to a passage from
T = —oo to T = +o00) toward the new equilibrium state that again has a positive T.

existence of a lower limit on the energy of a system; this, however, does not present any
problem because, if nothing else, the uncertainty principle alone is sufficient to set such
a limit for every physical system. Thus, it is quite normal for a system to be at a positive
temperature whereas it is very unusual for one to be at a negative temperature.

Now, suppose that we have a system whose energy cannot assume unlimited high
values. Then, we can surely visualize a temperature T such that the quantity NkT is
much larger than any admissible value, E,, of the energy. At such a high temperature, the
mutual interactions of the microscopic entities constituting the system may be regarded
as negligible; accordingly, one may write for the partition function of the system

N
Qn(B) = [Zeﬂsn} : (10)

Since, by assumption, all B¢, « 1, we have

N
Qn(B) =~ [Z {1 —Ben+ ;ﬂzsi}} : 1n

n

Let g denote the number of possible orientations of a microscopic constituent of the sys-
tem with respect to the direction of the external field; then, the quantities ), % (¢ = 0,1, 2)
may be replaced by ge®. We thus get

N P O Y
_N[lng Be+ B (e 8)] (12)
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The Helmholtz free energy of the system is then given by

AN, B) :—%lng—i—NE— gﬁm, (13)
from which
S(N,B)~NkIng — NTk B2 (e — )2, (14)
U(N,B) ~ Nz —NB(e — &), (15)
and
C(N, B) ~ NkB? (s — ). 16)'°

The formulae in equations (12) through (16) determine the thermodynamic properties of
the system for g >~ 0. The important thing to note here is that they do so not only for 8 > 0
but also for g < 0. In fact, these formulae hold in the vicinity of, and on both sides of, the
maximum in the § — U curve; see Figure 3.14. Quite expectedly, the maximum value of S is
given by NkIng, and it occurs at 8 = +0; S here decreases both ways, whether U decreases
(B > 0) or increases (8 < 0). It will be noted that the specific heat of the system in either
case is positive.

It is not difficult to show that if two systems, characterized by the temperature parame-
ters B; and B, are brought into thermal contact, then energy will flow from the system with
the smaller value of 8 to the system with the larger value of g; this will continue until the
two systems acquire a common value of this parameter. What is more important to note is
that this result remains literally true even if one or both of the g are negative. Thus, if g; is
—ve while 8, is +ve, then energy will flow from system 1 to system 2, that is, from the sys-
tem at negative temperature to the one at positive temperature. In this sense, systems at
negative temperatures are hotter than the ones at positive temperatures; indeed, negative
temperatures are above +oo, not below zero!

For further discussion of this topic, reference may be made to a paper by Ramsey (1956).

Problems

3.1. (a) Derive formula (3.2.36) from equations (3.2.14) and (3.2.35).
(b) Derive formulae (3.2.39) and (3.2.40) from equations (3.2.37) and (3.2.38).

3.2. Prove that the quantity g’ (xp), see equations (3.2.25), is equal to ((E — U)?) exp(28). Thus show that
equation (3.2.28) is physically equivalent to equation (3.6.9).

3.3. Using the fact that (1/n!) is the coefficient of x” in the power expansion of the function exp(x),
derive an asymptotic formula for this coefficient by the method of saddle-point integration.
Compare your result with the Stirling formula for n!.

15Compare this result with equation (3.6.3).
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3.4. Verify that the quantity (k/.V)InT, where

3.5.

3.6.

3.7.

(N, U) = Z/W{nr},

{nr}

is equal to the (mean) entropy of the given system. Show that this leads to essentially the same
result for InT if we take, in the foregoing summation, only the largest term of the sum, namely the
term W{n?}} that corresponds to the most probable distribution set.

[Surprised? Well, note the following example:

For all N, the summation over the binomial coefficients ¥ C, = N!/[rl (N — r!)] gives

N
ZNCI‘ — 2N;
r=0

therefore,

N
ln{ZNCr} =Nln2. (@
r=0

Now, the largest term in this sum corresponds to r ~ N/2; so, for large N, the logarithm of the
largest term is very nearly equal to

In{N!} — 2In{(N/2)!}
~NlnN—2glng=Nln2, (b)

which agrees with (a).]
Making use of the fact that the Helmholtz free energy A(INV, V, T) of a thermodynamic system is an
extensive property of the system, show that

N(iy) +v(Gy) =a

AN )y 1 vV /nr

[Note that this result implies the well-known relationship: Nu = A+ PV (= G).]

(a) Assuming that the total number of microstates accessible to a given statistical system is €,
show that the entropy of the system, as given by equation (3.3.13), is maximum when all
states are equally likely to occur.

(b) If, on the other hand, we have an ensemble of systems sharing energy (with mean value E),
then show that the entropy, as given by the same formal expression, is maximum when
P, o exp(—BE;), B being a constant to be determined by the given value of E.

(c) Further, if we have an ensemble of systems sharing energy (with mean value E) and also
sharing particles (with mean value N), then show that the entropy, given by a similar
expression, is maximum when P; s o exp(—aNy — BE;), @ and B being constants to be
determined by the given values of N and E.

Prove that, quite generally,
[l (), 1],

92InQ
V2 T

Verify that the value of this quantity for a classical ideal classical gas is Nk.

Cp—Cy=—k > 0.
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Show that, for a classical ideal gas,

5 :1n<9) +T(L“‘?l> .
Nk N aT Jp
If an ideal monatomic gas is expanded adiabatically to twice its initial volume, what will the ratio
of the final pressure to the initial pressure be? If during the process some heat is added to the
system, will the final pressure be higher or lower than in the preceding case? Support your answer
by deriving the relevant formula for the ratio Py /P;.
(a) The volume of a sample of helium gas is increased by withdrawing the piston of the containing
cylinder. The final pressure P is found to be equal to the initial pressure P; times (V;/ Vf)l'z, Vi
and Vf being the initial and final volumes. Assuming that the product PV is always equal to

2y, will (i) the energy and (ii) the entropy of the gas increase, remain constant, or decrease
during the process?

(b) If the process were reversible, how much work would be done and how much heat would be
added in doubling the volume of the gas? Take P; = 1 atm and V; = 1 m3.

Determine the work done on a gas and the amount of heat absorbed by it during a compression

from volume V; to volume V>, following the law PV" = const.

. If the “free volume” V of a classical system is defined by the equation

N
7V _ / o U-U@VAT [ g,
i=1

where U is the average potential energy of the system and U(qg;) the actual potential energy as a
function of the molecular configuration, then show that

V (2zmkT\*?*| 5
S=Nk|In{ = —— =1.
[ n { N ( 12 ) T3

In what sense is it justified to refer to the quantity V as the “free volume” of the system?

Substantiate your answer by considering a particular case — for example, the case of a hard sphere

gas.

(a) Evaluate the partition function and the major thermodynamic properties of an ideal gas
consisting of N1 molecules of mass m; and N, molecules of mass my, confined to a space
of volume V at temperature T. Assume that the molecules of a given kind are mutually
indistinguishable, while those of one kind are distinguishable from those of the other kind.

(b) Compare your results with the ones pertaining to an ideal gas consisting of (N7 + N>)
molecules, all of one kind, of mass m, such that m(N; + N») = m1 N + maNo.

. Consider a system of N classical particles with mass 7 moving in a cubic box with volume V = I3.

The particles interact via a short-ranged pair potential u(r;;) and each particle interacts with each
wall with a short-ranged interaction .y (), where z is the perpendicular distance of a particle
from the wall. Write down the Lagrangian for this model and use a Legendre transformation to
determine the Hamiltonian H.
(a) Show that the quantity P = — (%) = % (%) can clearly be identified as the instantaneous
pressure — that is, the force per unit area on the walls.
(b) Reconstruct the Lagrangian in terms of the relative locations of the particles inside the box
r; = Ls;, where the variables s; all lie inside a unit cube. Use a Legendre transformation to
determine the Hamiltonian with this set of variables.
(c) Recalculate the pressure using the second version of the Hamiltonian. Show that the pressure
now includes three contributions:
(1) acontribution proportional to the kinetic energy,
(2) a contribution related to the forces between pairs of particles, and
(3) acontribution related to the force on the wall.
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3.16.

3.18.

3.19.

3.20.

Show that in the thermodynamic limit the third contribution is negligible compared to the other
two. Interpret contributions 1 and 2 and compare to the virial equation of state (3.7.15).

. Show that the partition function Qn(V, T) of an extreme relativistic gas consisting of N monatomic

molecules with energy—-momentum relationship ¢ = pc, ¢ being the speed of light, is given by

VT—1 8VkT3N
QN(’)_MJT(H) .

Study the thermodynamics of this system, checking in particular that

1 4
PV=§U, U/N =3kT, and y=3

Next, using the inversion formula (3.4.7), derive an expression for the density of states g(E) of this
system.

Consider a system similar to the one in the preceding problem but consisting of 3N particles
moving in one dimension. Show that the partition function in this case is given by

1 kTN
QN (L, T) = 3N [ZL(%)] ,

L being the “length” of the space available. Compare the thermodynamics and the density of states
of this system with the corresponding quantities obtained in the preceding problem.

. If we take the function f(gq, p) in equation (3.5.3) to be U — H(q, p), then clearly (f) = 0; formally,

this would mean
/ (U - H(g, ple PH4P dw = 0.

Derive, from this equation, expression (3.6.3) for the mean-square fluctuation in the energy of a
system embedded in the canonical ensemble.
Show that for a system in the canonical ensemble

(AE)®) = kP {T4 (ﬂ) +2T3CV} .
aT )y

Verify that for an ideal gas

ABNA_ 2 [(AEVYZ &

7] " 3N U T 9N?’
Consider the long-time averaged behavior of the quantity dG/dt, where
G= Z qibi,
i

and show that the validity of equation (3.7.5) implies the validity of equation (3.7.6), and vice versa.
Show that, for a statistical system in which the interparticle potential energy u(r) is a
homogeneous function (of degree n) of the particle coordinates, the virial 'V is given by

VY =-3PV-nU
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and, hence, the mean kinetic energy K by

1. 1
K=—-2%=2@PV+nl)=

TE) (3PV + nE);

here, U denotes the mean potential energy of the system while E = K + U. Note that this result

holds not only for a classical system but for a quantum-mechanical one as well.

(a) Calculate the time-averaged kinetic energy and potential energy of a one-dimensional
harmonic oscillator, both classically and quantum-mechanically, and show that the results
obtained are consistent with the result established in the preceding problem (with n = 2).

(b) Consider, similarly, the case of the hydrogen atom (n = —1) on the basis of (i) the Bohr-
Sommerfeld model and (ii) the Schrédinger model.

(c) Finally, consider the case of a planet moving in (i) a circular orbit or (ii) an elliptic orbit around
the sun.

The restoring force of an anharmonic oscillator is proportional to the cube of the displacement.

Show that the mean kinetic energy of the oscillator is fwice its mean potential energy.

Derive the virial equation of state equation (3.7.15) from the classical canonical partition function

(3.5.5). Show that in the thermodynamic limit the interparticle terms dominate the ones that come

from interactions of the particles with the walls of the container.

Show that in the relativistic case the equipartition theorem takes the form

(mou? (1 — u?/c?) 12y = 3kT,

where my is the rest mass of the particle and u its speed. Check that in the extreme relativistic case
the mean thermal energy per particle is twice its value in the nonrelativistic case.

Develop a kinetic argument to show that in a noninteracting system the average value of the
quantity ; p;q; is precisely equal to 3PV. Hence show that, regardless of relativistic
considerations, PV = NkT.

The energy eigenvalues of an s-dimensional harmonic oscillator can be written as

g =(j+s/2hw; j=0,1,2,...

Show that the jth energy level has a multiplicity (j+ s — 1)! /j! (s — 1)!. Evaluate the partition
function, and the major thermodynamic properties, of a system of N such oscillators, and compare
your results with a corresponding system of sV one-dimensional oscillators. Show, in particular,
that the chemical potential s = su;.

Obtain an asymptotic expression for the quantity In g(E) for a system of N quantum-mechanical
harmonic oscillators by using the inversion formula (3.4.7) and the partition function (3.8.15).
Hence show that

S E 1 ) E 1 E 1 1 E 1
Nk~ <Nha) + 2> n(th + 2) (th 2) n(th 2)'
[Hint: Employ the Darwin-Fowler method.]

(a) When a system of N oscillators with total energy E is in thermal equilibrium, what is the
probability p, that a particular oscillator among them is in the quantum state n?

[Hint: Use expression (3.8.25).]
Show that, for N> 1 and R>> n, p, ~ )"/ + 1)"*!, where 77 = R/N.

(b) When an ideal gas of N monatomic molecules with total energy E is in thermal equilibrium,
show that the probability of a particular molecule having an energy in the neighborhood of ¢
is proportional to exp(—fB¢), where § = 3N /2E.

[Hint: Use expression (3.5.16) and assume that N > 1 and E > ¢.]
The potential energy of a one-dimensional, anharmonic oscillator may be written as

V(q) =cq* - gq° - fq*,

where ¢, g, and f are positive constants; quite generally, g and f may be assumed to be very small
in value. Show that the leading contribution of anharmonic terms to the heat capacity of the
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oscillator, assumed classical, is given by

3..(f 5g°
Zk (02+4c3 g

and, to the same order, the mean value of the position coordinate g is given by

3git
4 ¢ -

The energy levels of a quantum-mechanical, one-dimensional, anharmonic oscillator may be

approximated as
1 1\?2
&n = n+§ how—x n+§ hw; n=0,1,2,...

The parameter x, usually « 1, represents the degree of anharmonicity. Show that, to the first order
in x and the fourth order in u(= hw/kT), the specific heat of a system of N such oscillators is given

by
1 1 1 1
=Nk|(1- =+ —u*)+ax( =+ —=iu®)]|.
¢ [( 2" +240”>Jr x<u+80u
Note that the correction term here increases with temperature.
Study, along the lines of Section 3.8, the statistical mechanics of a system of N “Fermi oscillators,”
which are characterized by only two eigenvalues, namely 0 and ¢.
The quantum states available to a given physical system are (i) a group of g1 equally likely states,
with a common energy ¢ and (ii) a group of g» equally likely states, with a common energy 2 > ¢;.
Show that this entropy of the system is given by

S =—klp1In(p1/g1) + p2In(p2/82)],

where p; and p» are, respectively, the probabilities of the system being in a state belonging to group
lortogroup 2: p1+p2=1.
(a) Assuming that the p; are given by a canonical distribution, show that

_x X
S=k [lngl +In{l+(g2/g0e ™} + (gl/gz)ex] )
where x = (¢2 — £1)/kT, assumed positive. Compare the special case g1 = g» = 1 with that of the
Fermi oscillator of the preceding problem.

(b) Verify the foregoing expression for S by deriving it from the partition function of the system.

() CheckthatatT — 0, S— klng;. Interpret this result physically.

Gadolinium sulphate obeys Langevin’s theory of paramagnetism down to a few degrees Kelvin. Its

molecular magnetic moment is 7.2 x 10~>amp-m?. Determine the degree of magnetic saturation

in this salt at a temperature of 2K in a field of flux density 2 weber/m?.

Oxygen is a paramagnetic gas obeying Langevin’s theory of paramagnetism. Its susceptibility

per unit volume, at 293K and at atmospheric pressure, is 1.80 x 10~® mks units. Determine its

molecular magnetic moment and compare it with the Bohr magneton (which is very nearly equal

t0 9.27 x 10~>*amp-m?).

(a) Consider a gaseous system of N noninteracting, diatomic molecules, each having an electric
dipole moment u, placed in an external electric field of strength E. The energy of such a
molecule will be given by the kinetic energy of rotation as well as translation plus the potential
energy of orientation in the applied field:

P { P, P
2m

2l  2[sin®0

} — nEcosé,
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where I is the moment of inertia of the molecule. Study the thermodynamics of this system,
including the electric polarization and the dielectric constant. Assume that (i) the system is a
classical one and (ii) |nE| < kT.16
(b) The molecule H,O has an electric dipole moment of 1.85 x 10718 e.s.u. Calculate, on the basis
of the preceding theory, the dielectric constant of steam at 100°C and at atmospheric pressure.
Consider a pair of electric dipoles u and u’, oriented in the directions (6, ¢) and (¢',¢"),
respectively; the distance R between their centers is assumed to be fixed. The potential energy in
this orientation is given by
up
R3

{2cos6 cosh’ —sindsind’ cos(¢p — ¢')}.

Now, consider this pair of dipoles to be in thermal equilibrium, their orientations being governed
by a canonical distribution. Show that the mean force between these dipoles, at high temperatures,
is given by

L (uu)® R
kT R’

R being the unit vector in the direction of the line of centers.
Evaluate the high-temperature approximation of the partition function of a system of magnetic
dipoles to show that the Curie constant Cj is given by

_ Nogzﬂéﬁ

G 2

Hence derive the formula (3.9.26).

Replacing the sum in (3.9.18) by an integral, evaluate Q; (8) of the given magnetic dipole and study

the thermodynamics following from it. Compare these results with the ones following from the

Langevin theory.

Atoms of silver vapor, each having a magnetic moment p (g = 2,J = 3), align themselves either

parallel or antiparallel to the direction of an applied magnetic field. Determine the respective

fractions of atoms aligned parallel and antiparallel to a field of flux density 0.1 weber/m? at a

temperature of 1,000 K.

(a) Show that, for any magnetizable material, the heat capacities at constant field H and at
constant magnetization M are connected by the relation

oH oM
Ci—Cu=-T(—) (=) .
e <8T>M(8T>H

(b) Show that for a paramagnetic material obeying Curie’s law
Cy — Cy = CH?/T?,

where C on the right side of this equation denotes the Curie constant of the given sample.
A system of N spins at a negative temperature (E > 0) is brought into contact with an ideal-gas
thermometer consisting of N’ molecules. What will the nature of their state of mutual equilibrium
be? Will their common temperature be negative or positive, and in what manner will it be affected
by the ratio N'/N?
Consider the system of N magnetic dipoles, studied in Section 3.10, in the microcanonical
ensemble. Enumerate the number of microstates, €2 (IV, E), accessible to the system at energy E
and evaluate the quantities S(V, E) and T(NN, E). Compare your results with equations (3.10.8)
and (3.10.9).

16The electric dipole moments of molecules are generally of order 10~'8 e.s.u. (or a Debye unit). In a field of 1 e.s.u.
(=300volts/cm) and at a temperature of 300K, the parameter SuE = O(10™4).
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3.43.

3.44.

Consider a system of charged particles (not dipoles), obeying classical mechanics and classical
statistics. Show that the magnetic susceptibility of this system is identically zero (Bohr-van
Leeuwen theorem).

[Note that the Hamiltonian of this system in the presence of a magnetic field H(= V x A) will be a

function of the quantities p; + (ej/¢)A(r;), and not of the p; as such. One has now to show that the

partition function of the system is independent of the applied field.]

The expression (3.3.13) for the entropy S is equivalent to Shannon’s (1949) definition of the

information contained in a message I = — ), PrIn(P;), where P; represents the probability of

message 1.

(@) Show that information is maximized if the probabilities of all messages are the same. Any other
distribution of probabilities reduces the information. In English, “e” is more common than “z”,
so P > P,, so the information per character in an English message is less than the optimal
amount possible based on the number of different characters used in an English text.

(b) The information in a text is also affected by correlations between characters in the text. For
example, in English, “q” is always followed by “u”, so this pair of characters contains the same
information as “q” alone. The probability of a character indexed by r followed immediately
by character indexed by r’ is P » = PPy G-, where G, is the character-pair correlation
function. If pairs of characters are uncorrelated, then G, » = 1. Show that if characters are
uncorrelated then the information in a two-character message is twice the information of a
single-character message and that correlations (G, # 1) reduce the information content.
[Hint: Use the inequality Inx <x —1.]

(c) Write a computer program to determine the information per character in a text file by
determining the single-character probabilities P, and character-pair correlations Gy .
Computers usually use one full byte per character to store information. Since one byte can
store 256 different messages, the potential information per byte is In256 = 8In2 = 8bits. Show
that the information per character in your text file is considerably less than 8 bits and explain
why it is possible for file-compression algorithms to reduce the size of a computer file without
sacrificing any of the information contained in the file.
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The Grand Canonical Ensemble

In the preceding chapter we developed the formalism of the canonical ensemble and
established a scheme of operations for deriving the various thermodynamic properties of a
given physical system. The effectiveness of that approach became clear from the examples
discussed there; it will become even more vivid in the subsequent studies carried out in
this text. However, for a number of problems, both physical and chemical, the usefulness
of the canonical ensemble formalism turns out to be rather limited and it appears that a
further generalization of this formalism is called for. The motivation that brings about this
generalization is physically of the same nature as the one that led us from the microcanoni-
cal to the canonical ensemble — it is just the next natural step from there. It comes from the
realization that not only the energy of a system but the number of particles as well is hardly
ever measured in a “direct” manner; we only estimate it through an indirect probing into
the system. Conceptually, therefore, we may regard both N and E as variables and identify
their expectation values, (N) and (E), with the corresponding thermodynamic quantities.
The procedure for studying the statistics of the variables N and E is self-evident. We
may either (i) consider the given system A as immersed in a large reservoir A’ with which it
can exchange both energy and particles or (ii) regard it as a member of what we may call
a grand canonical ensemble, which consists of the given system A and a large number of
(mental) copies thereof, the members of the ensemble carrying out a mutual exchange of
both energy and particles. The end results, in either case, are asymptotically the same.

4.1 Equilibrium between a system
and a particle-energy reservoir

We consider the given system A as immersed in a large reservoir A’, with which it can
exchange both energy and particles; see Figure 4.1. After some time has elapsed, the system
and the reservoir are supposed to attain a state of mutual equilibrium. Then, according
to Section 1.3, the system and the reservoir will have a common temperature T and a
common chemical potential ;. The fraction of the total number of particles N and the
fraction of the total energy E® that the system A can have at any time ¢ are, however,
variables (whose values, in principle, can lie anywhere between zero and unity). If, at a
particular instant of time, the system A happens to be in one of its states characterized by
the number N, of particles and the amount E; of energy, then the number of particles in
the reservoir would be N, and its energy E, such that

Ny +N. =N© = const. 1)

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00004-9 9 1
© 2011 Elsevier Ltd. All rights reserved.
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FIGURE 4.1 A statistical system immersed in a particle—energy reservoir.

and
Es+E,=E® = const. )
Again, since the reservoir is supposed to be much larger than the given system, the values

of N, and E; that are going to be of practical importance will be very small fractions of the
total magnitudes N® and E, respectively; therefore, for all practical purposes,’

Ny N
NO = (1 ~NO «1 3)
and
Es E,
50 = (1 Q) < 1. 4)

Now, in the manner of Section 3.1, the probability P, that, at any time ¢, the sys-
tem A is found to be in an (N, Es)-state would be directly proportional to the number
of microstates ©'(N;,E;) that the reservoir can have for the corresponding macrostate
(N}, Eg). Thus,

Prsx 2 (N - N, EO — Ej). (5)
Again, in view of (3) and (4), we can write

InQ'N® - N, EQ® —E) =InQ@' (N, E®)

+<81n$2’) ( NH_(aan/) (—E+
oN’ N/'=N©) r oE’ E'=E©) s

w 1

~InQ' N, E® Ny — —
mE N Tk

Eg; (6)

see equations (1.2.3), (1.2.7), (1.3.3), and (1.3.5). Here, 1’ and T’ are, respectively, the
chemical potential and the temperature of the reservoir (and hence of the given system

!Note that A here could well be a relatively small “part” of a given system A©, while A’ represents the “rest” of A®.,
That would give a truly practical perspective to the grand canonical formalism.
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as well). From (5) and (6), we obtain the desired result:

Py s < exp (—aNy — BEy), @)
where

a=—u/kT, B=1/kT. 8)

On normalization, it becomes

exp (—aNy — BEs)
Py s = ; 9
"= T exp(—aN, - BE;) ®)

[
the summation in the denominator goes over all the (NN, E;)-states accessible to the
system A. Note that our final expression for P, is independent of the choice of the
reservoir.

We shall now examine the same problem from the ensemble point of view.

4.2 A system in the grand canonical ensemble

We now visualize an ensemble of V" identical systems (which, of course, can be labeled as
1,2,...,s/) mutually sharing a total number of particles® &N N and a total energy N E. Let
ny,s denote the number of systems that have, at any time ¢, the number N, of particles and
the amount E; of energy (r,s =0, 1,2,...); then, obviously,

D onrs=N, (1a)
r,Ss
> nrsNy=eNN, (1b)
s
and
anlsE‘g: eNE. (]-C)

s

Any set {n, ¢}, of the numbers n, s, which satisfies the restrictive conditions (1), represents
one of the possible modes of distribution of particles and energy among the members
of our ensemble. Furthermore, any such mode of distribution can be realized in W{n, ¢}
different ways, where

N!

W) = gy
s ’

)

2For simplicity, we shall henceforth use the symbols N and E instead of (N) and (E).
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We may now define the most probable mode of distribution, {n}gl, as the one that
maximizes expression (2), satisfying at the same time the restrictive conditions (1). Going
through the conventional derivation, see Section 3.2, we obtain for a large ensemble

n?,s _ exp (—aNy — BEs) 3)
N > exp(—aNy — BEy) '
TS

compare to the corresponding equation (3.2.10) for the canonical ensemble. Alternatively,
we may define the expectation (or mean) values of the numbers n, s, namely

Z/ ny,sWing,s}

{nr,s}

Y Winys) '

{nr,s}

4

(nr,s) =

where the primed summations go over all distribution sets that conform to conditions (1).
An asymptotic expression for (n,;) can be derived by using the method of Darwin and
Fowler — the only difference from the corresponding derivation in Section 3.2 being that,
in the present case, we will have to work with functions of more than one (complex)
variable. The derivation, however, runs along similar lines, with the result

Lim (Nr.s) - nj,s _ €&Xp (—aN; — BEy)

Nooco N N _Zexp(—OINr—,BEs), ©
TS

in agreement with equation (4.1.9). The parameters « and g, so far undetermined, are
eventually determined by the equations

NS
>_exp (—aN; — BEy)
7,

> Nyexp(—aN; — BEy) 5
= {anexp (—aN; - ,BEs)} (6)

ns

and

> Esexp (—aN; — BEs)

T ns . _i . -
E= S exp(—aN;—BEy) 0B {ln;exl)( aNy ﬂEs)} , )
ns »

where the quantities N and E here are supposed to be preassigned.
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4.3 Physical significance of the various
statistical quantities

To establish a connection between the statistics of the grand canonical ensemble and the
thermodynamics of the system under study, we introduce a quantity g, defined by

g=In Zexp(—aNr—ﬂEs) ; 1)

r,s

the quantity g is a function of the parameters o and g, and also of all the E;.® Taking the
differential of g and making use of equations (4.2.5), (4.2.6), and (4.2.7), we get

dg=—Ndo — Edp — % Z(nr,s) dE;, @
T,

so that
— — - _ 1
d(g+aN+BE) =8 (ZdNerE— WZ(n,@d&). 3)
S

To interpret the terms appearing on the right side of this equation, we compare the
expression enclosed within the parentheses with the statement of the first law of thermo-
dynamics, that is,

8Q=dE+8W — udN, 4

where the various symbols have their usual meanings. The following correspondence now
seems inevitable:

1
oW =—— > (nrg)dEs, p=—a/p, 5)
s
with the result that
d(q+aN + BE) = BSQ. (6)

The parameter 8, being the integrating factor for the heat §Q, must be equivalent to the
reciprocal of the absolute temperature T, so we may write

B =1/kT (7
and, hence,
a=—u/kT. (8)

3This quantity was first introduced by Kramers, who called it the g-potential.
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The quantity (g +«N + BE) would then be identified with the thermodynamic variable
S/k; accordingly,
S~ = TS+ uN —E
q=7 ~aN-pE=—— 7. 9)
However, uN is identically equal to G, the Gibbs free energy of the system, and hence to
(E — TS+ PV). So, finally,

PV

g=In Zexp (—aN; — BEg) § = T (10

s

Equation (10) provides the essential link between the thermodynamics of the given sys-
tem and the statistics of the corresponding grand canonical ensemble. It is, therefore, a
relationship of central importance in the formalism developed in this chapter.

To derive further results, we prefer to introduce a parameter z, defined by the relation

z=e"% = gh/kT, (11)

the parameter z is generally referred to as the fugacity of the system. In terms of z, the
g-potential takes the form

qzln{ZereﬁEs} (12)

S

=In i 2N Qu, (V, T)} (with Qo =1), (13)
Ny=0
SO we may write
q(z,V,T)=InQ(z,V,T), (14)
where
Qi V,T) = i ZNrQn, (V,T)  (with Qp = 1). (15)
Ny=0

Note that, in going from expression (12) to (13), we have (mentally) carried out a sum-
mation over the energy values E;, with N, fixed, thus giving rise to the partition function
Qn, (V, T); of course, the dependence of Qn, on V comes from the dependence of the E;
on V. In going from (13) to (14), we have (again mentally) carried out a summation over all
the numbers N, =0,1,2,---,00, thus giving rise to the grand partition function Q(z,V,T)
of the system. The g-potential, which we have already identified with PV /kT, is, therefore,
the logarithm of the grand partition function.
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It appears that in order to evaluate the grand partition function @(z, V, T) we have to
go through the routine of evaluating the partition function Q(N, V, T). In principle, this is
indeed true. In practice, however, we find that on many occasions an explicit evaluation
of the partition function is extremely hard while considerable progress can be made in
the evaluation of the grand partition function. This is particularly true when we deal with
systems in which the influence of quantum statistics and/or interparticle interactions is
important; see Sections 6.2 and 10.1. The formalism of the grand canonical ensemble then
proves to be of considerable value.

We are now in a position to write down the full recipe for deriving the leading ther-
modynamic quantities of a given system from its g-potential. We have, first of all, for the
pressure of the system

kT kT
PV, 1) = -4 V,T) = - In@& V,T). (16)

Next, writing N for N and U for E, we obtain with the help of equations (4.2.6), (4.2.7),
and (11)

NG V,T) = z[iq(z, v, T)] - kT[iqw, v, T)} a7)
0z v,T ou v,T
and
Uz, V,T)=— [i @V T)] = kT? [i zV T)] (18)
»y Vo - 3/36’ y Vo v - 8Tq y » ZYV-

Eliminating z between equations (16) and (17), one obtains the equation of state, that is,
the (P, V, T)-relationship, of the system. On the other hand, eliminating z between equa-
tions (17) and (18), one obtains U as a function of N, V, and T, which readily leads to the
specific heat at constant volume as (dU/3T)n,v. The Helmholtz free energy is given by the
formula

A=Nu—PV=NkTlnz—kTInQ(z,V,T)

Qz,V,T)

= —kTIn =" (19)

which may be compared with the canonical ensemble formula A= —kTInQ(N, V,T); see
also Problem 4.2. Finally, we have for the entropy of the system

U-A aq
S= — = kT <ﬁ>z,v — Nklnz+ kq. (20)
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4.4 Examples

We shall now study a couple of simple problems, with the explicit purpose of demonstrat-
ing how the method of the g-potential works. This is not intended to be a demonstration of
the power of this method, for we shall consider here only those problems that can be solved
equally well by the methods of the preceding chapters. The real power of the new method
will become apparent only when we study problems involving quantum-statistical effects
and effects arising from interparticle interactions; many such problems will appear in the
remainder of the text.

The first problem we propose to consider here is that of the classical ideal gas. In
Section 3.5 we showed that the partition function Qn(V,T) of this system could be
written as

[Q1(V, DN

ey

where Q;(V,T) may be regarded as the partition function of a single particle in the sys-
tem. First of all, we should note that equation (1) does not imply any restrictions on
the particles having internal degrees of motion; those degrees of motion, if present,
would affect the results only through Q;. Second, we should recall that the factor N!
in the denominator arises from the fact that the particles constituting the gas are, in
fact, indistinguishable. Closely related to the indistinguishability of the particles is the
fact that they are nonlocalized, for otherwise we could distinguish them through their
very sites; compare, for instance, the system of harmonic oscillators, which was studied
in Section 3.8. Now, since our particles are nonlocalized they can be anywhere in the
space available to them; consequently, the function Q; will be directly proportional
toV:

Qu(V,T) =Vf(D), )

where f(T) is a function of temperature alone. We thus obtain for the grand partition
function of the gas

[e%s) 00 V(T Ny
Qe V.= QN (V. T)= ) {Zf]f,i,”
Ny=0 Ny=0 "
=exp {zVf(T)}, (3)

which gives
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Formula (4.3.16) through (4.3.20) then lead to the following results:

P =zkTf(T), )
N =zVf(T), (6)
U = zVKT?*f'(T), (7)
A= NkTInz— zVKTf(T), (8)
and
S = —NkInz+ zVk{Tf (T) + f(T)}. )

Eliminating z between (5) and (6), we obtain the equation of state of the system:
PV = NkT. (10)

We note that equation (10) holds irrespective of the form of the function f(T). Next,
eliminating z between (6) and (7), we obtain

U = NkT*f'(T)/f(T), 11
which gives

/ 2 1/ / 2
o — 2T (D + TR (D) — [ (D)
[f ()12

(12)

In simple cases, the function f(T) turns out to be directly proportional to a certain
power of T. Supposing that f(T) « T", equations (11) and (12) become

U = n(NkT) (11a)
and
Cy = n(Nk). (12a)

Accordingly, the pressure in such cases is directly proportional to the energy density of the
gas, the constant of proportionality being 1/n. The reader will recall that the case n =3/2
corresponds to a nonrelativistic gas while n = 3 corresponds to an extreme relativistic one.

Finally, eliminating z between equation (6) and equations (8) and (9), we obtain A
and S as functions of N,V, and T. This essentially completes our study of the classical
ideal gas.

The next problem to be considered here is that of a system of independent, localized
particles — a model which, in some respects, approximates a solid. Mathematically, the
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problem is similar to that of a system of harmonic oscillators. In either case, the micro-
scopic entities constituting the system are mutually distinguishable. The partition function
Qn(V,T) of such a system can be written as

Qn(V,T) =[Qu(V,DIVN. (13)

At the same time, in view of the localized nature of the particles, the single-particle par-
tition function Q; (V, T) is essentially independent of the volume occupied by the system.
Consequently, we may write

Qu(V,T) =¢(D), (14)

where ¢(T) is a function of temperature alone. We then obtain for the grand partition
function of the system

Q= V,T)= ) [ep(DNV =[1-2z¢(D]™"; (15)
Ny=0

clearly, the quantity z¢(T) must stay below unity, so that the summation over N, is
convergent.

The thermodynamics of the system follows straightforwardly from equation (15). We
have, to begin with,

T T
pP= kvq(z, T) :—%ln{l—zd:(T)}. (16)
Since both z and T are intensive variables, the right side of (16) vanishes as V — oco. Hence,
in the thermodynamic limit, P = 0.* For other quantities of interest, we obtain, with the

help of equations (4.3.17) through (4.3.20),

291
N = T—26(D)’ (17)
_ zkT2¢/(T)
=TT 26T’ (18)
A=NkTInz+ kTIn{1 —z¢(T)}, 19)
and
o B B zkT¢' (T)
S=—-Nklnz— kIn{l —z¢(T)} + 120D —26D)" (20)
From (17), we get
T) = N ~1 ! N>1 (21)
2 ( )—TH— N (N> 1).

*It will be seen in the sequel that P actually vanishes like (InN)/N.
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It follows that
1 1
Equations (17) through (20) now give
U/N =kT?¢/(T)/¢(T), (18a)
A/N = —kTIn¢(T) + O(lnTN) (19a)
and
, InN
S/Nk=In¢(T)+ T¢ (T)/¢(T)+O<T>. (20a)
Substituting
#(T) = [2sinh(hw/2kT)] ! (23)

into these formulae, we obtain results pertaining to a system of quantum-mechanical,
one-dimensional harmonic oscillators. The substitution

¢ (T) = kT /ho, (24)

on the other hand, leads to results pertaining to a system of classical, one-dimensional
harmonic oscillators.

As a corollary, we examine here the problem of solid-vapor equilibrium. Consider a
single-component system, having two phases — solid and vapor — in equilibrium, con-
tained in a closed vessel of volume V at temperature T. Since the phases are free to
exchange particles, a state of mutual equilibrium would imply that their chemical poten-
tials are equal; this, in turn, means that they have a common fugacity as well. Now, the
fugacity zg of the gaseous phase is given by, see equation (6),

Neg

=—=—) 25
%8 = V(1) (5

where N is the number of particles in the gaseous phase and V; the volume occupied by
them; in a typical case, Vg >~ V. The fugacity z; of the solid phase, on the other hand, is
given by equation (21):

1
~ —_ 26
R (26)

Equating (25) and (26), we obtain for the equilibrium particle density in the vapor phase

Ng/Vg =f(1)/¢(T). 27)
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Now, if the density in the vapor phase is sufficiently low and the temperature of the system
sufficiently high, the vapor pressure P would be given by

f(

Pyapor = g kT kT¢(T)

(28)

To be specific, we may assume the vapor to be monatomic; the function f(7T) is then of
the form

f(T) = @amkT)3? k3. (29)

On the other hand, if the solid phase can be approximated by a set of three-dimensional
harmonic oscillators characterized by a single frequency w (the Einstein model), the
function ¢ (T) would be

¢ (T) = [2sinh(hw/2kT)] 3. (30)

However, there is one important difference here. An atom in a solid is energetically more
stabilized than an atom that is free — that is why a certain threshold energy is required to
transform a solid into separate atoms. Let ¢ denote the value of this energy per atom, which
in a way implies that the zeros of the energy spectra sg and &5, which led to the functions
(29) and (30), respectively, are displaced with respect to one another by an amount ¢. A true
comparison between the functions f(T) and ¢ (T) must take this into account. As a result,
we obtain for the vapor pressure

2nmkT

3/2
7 ) [2sinh(hw/2kT)]3e¢/kT 31)

Pvapor = kT(

In passing, we note that equation (27) also gives us the necessary condition for the
formation of the solid phase. The condition clearly is:

f(
N>V—k=-=- 32
o(T)’ o2
where N is the total number of particles in the system. Alternatively, this means that
T<T, (33)
where T, is a characteristic temperature determined by the implicit relationship
f(Ty) N
= —_—, 34
T V G4

Once the two phases appear, the number Ng(T) will have a value determined by equa-
tion (27) while the remainder, N — Ng, will constitute the solid phase.
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4.5 Density and energy fluctuations in the grand
canonical ensemble: correspondence
with other ensembles

In a grand canonical ensemble, the variables N and E, for any member of the ensemble,
can lie anywhere between zero and infinity. Therefore, on the face of it, the grand canoni-
cal ensemble appears to be very different from its predecessors — the canonical and the
microcanonical ensembles. However, as far as thermodynamics is concerned, the results
obtained from this ensemble turn out to be identical to the ones obtained from the other
two. Thus, in spite of strong facial differences, the overall behavior of a given physical sys-
tem is practically the same whether it belongs to one kind of ensemble or another. The
basic reason for this is that the “relative fluctuations” in the values of the quantities that
vary from member to member in an ensemble are practically negligible. Therefore, in spite
of the different surroundings that different ensembles provide to a given physical system,
the overall behavior of the system is not significantly affected.

To appreciate this point, we shall evaluate the relative fluctuations in the particle den-
sity n and the energy E of a given physical system in the grand canonical ensemble.
Recalling that

ZNrefotNrfﬁEs

— T,
N= SN M
r,s
it readily follows that
(22’) — N24+N @)
/S’ES
Thus
(AN)ZENZ—N2=—<8N) =IcT<8N> . 3)
oo o
TV T,V

From (3), we obtain for the relative mean-square fluctuation in the particle density
n(=N/V)

2 2 N
T,V

In terms of the variable v (= V/N), we may write

(An)2  kTV? (3(V/v) kT [ ov
7 vz ow Jrv Vv \ou/r
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To put this result into a more practical form, we recall the thermodynamic relation
du =vdP—sdT, 6)

according to which du (at constant T) = vdP. Equation (5) then takes the form

2
(an? kT1<au) _kr -
T

72 Vu\oP v
where «t is the isothermal compressibility of the system.

Thus, the relative root-mean-square fluctuation in the particle density of the given sys-
tem is ordinarily O(N —1/2y and, hence, negligible. However, there are exceptions, like the
ones met with in situations accompanying phase transitions. In those situations, the com-
pressibility of a given system can become excessively large, as is evidenced by an almost
“flattening” of the isotherms. For instance, at a critical point the compressibility diverges,
so it is no longer intensive. Finite-size scaling theory described in Chapters 12 and 14 indi-
cates that at the critical point the isothermal compressibility scales with system size as
Kk (Te) ~ NY/4 where y and v are certain critical exponents and d is the dimension. For
the case of experimental liquid-vapor critical points, «,(T;) ~ N%63, Accordingly, the root-
mean-square density fluctuations grow faster than N'/?2 — in this case, like N%82, Thus,
in the region of phase transitions, especially at the critical points, we encounter unusu-
ally large fluctuations in the particle density of the system. Such fluctuations indeed exist
and account for phenomena like critical opalescence. It is clear that under these circum-
stances the formalism of the grand canonical ensemble could, in principle, lead to results
that are not necessarily identical to the ones following from the corresponding canonical
ensemble. In such cases, it is the formalism of the grand canonical ensemble that will have
to be preferred because only this one will provide a correct picture of the actual physical
situation.

We shall now examine fluctuations in the energy of the system. Following the usual
procedure, we obtain

(AER =F2—-F = —(aE) = kT? (ﬂ) . (8)
2,V aT z,V

To put expression (8) into a more comprehensible form, we write

oU oUu oU oN
) =(55) +(5e) (m¢) ©)
oT ), v oT Jnv IN/ry\oT ),y

where the symbol N is being used interchangeably for N. Now, in view of the fact that

N:—(iln(,‘l> , U:—(iln(,‘l> , (10)
Ja ,BIV 3/3 a,V
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we have

(5 ).~ () a
Bﬂ a,V - Jo B,V

(ﬂ) _l(ﬂ) (12)
T )y T\ou /)1y

Substituting expressions (9) and (12) into equation (8) and remembering that the quantity
(@U/3T)n,v is the familiar Cy, we get

and, hence,

— U oU
AE)? = kT?C +kT<—> <7) ) 13
(AE) v N )y \an )y (13)
Invoking equations (3.6.3) and (3), we finally obtain
— U QN
(AE)2 = (AE)*)can + { (W) } (AN)2. (14)
T,V

Formula (14) is highly instructive; it tells us that the mean-square fluctuation in the
energy E of a system in the grand canonical ensemble is equal to the value it would
have in the canonical ensemble plus a contribution arising from the fact that now the
particle number N is also fluctuating. Again, under ordinary circumstances, the relative
root-mean-square fluctuation in the energy density of the system would be practically
negligible. However, in the region of phase transitions, unusually large fluctuations in the
value of this variable can arise by virtue of the second term in the formula.

4.6 Thermodynamic phase diagrams

One of the great successes of thermodynamics and statistical mechanics over the last 150
years has been in the study of phase transitions. Statistical mechanics provides the basis
for accurate models for a wide variety of thermodynamic phases of materials and has led
to a detailed understanding of phase transitions and critical phenomena.

Condensed materials exist in a variety of phases that depend on thermodynamic
parameters such as temperature, pressure, magnetic field, and so on. Thermodynamics
and statistical mechanics can be used to determine the properties of individual phases,
and the locations and characteristics of the phase transitions that occur between those
phases. Thermodynamic phases are regions in the phase diagram where the thermody-
namics properties are analytic functions of the thermodynamic parameters, while phase
transitions are points, lines, or surfaces in the phase diagram where the thermodynamic
properties are nonanalytic. Much of the remainder of this text is devoted to using statistical
mechanics to explain the properties of material phases and phase transitions.
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(

FIGURE 4.2 Sketches (not-to-scale) of the P-T (a) and P-V (b) phase diagrams for argon. This geometry is generic
for a wide range of materials. The letters S, L, and V denote solid, liquid, and vapor phases.

It is instructive to examine the structure of phase diagrams. Argon provides a good
example because the structure of its phase diagram is similar to that of many other mate-
rials (see Figure 4.2). At moderate temperatures and pressures, the stable thermodynamic
phases of argon are solid, liquid, and vapor. At high temperatures there is a supercritical
fluid phase that smoothly connects the liquid and vapor phases. Most materials, includ-
ing argon, exhibit multiple solid phases especially at high pressures and low temperatures.
Figure 4.2(a) is the phase diagram in the P-T plane and shows the solid-liquid coexis-
tence line, the liquid—vapor coexistence line, and the solid-vapor coexistence line. The
three lines meet at the triple point (7%, P;) and the liquid—vapor coexistence line ends at
the critical point (T;, P;). The triple point values and critical point values for argon are
T; =83.8K, P; =68.9 kPa, T, = 150.7 K, and P, = 4.86 MPa, respectively.

Figure 4.2(b) is the phase diagram in the P-V plane and shows the pressure versus the
specific volume v(= V/N) on the coexistence lines. The dashed lines indicate the triple
point pressure and critical pressure in both figures. The horizontal tie lines are the por-
tions of isotherms as they cross coexistence lines and show the discontinuities of v. The tie
lines in order from bottom to top are: sublimation tie lines connecting the solid and vapor
phases, the triple point tie line that connects all three phases, and a series of solid-liquid
and liquid—vapor tie lines. Notice that the liquid and vapor specific volumes continuously
approach each other and are both equal to the critical specific volume v, at the critical
point.

The properties of the vapor, liquid, and solid phases are:

e The vapor phase is a low-density gas that is accurately described by the ideal-gas
equation of state P = nkT with corrections that are described by the virial expansion;
see Chapters 6 and 10.
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e Theliquid phase is a dense fluid with strong interactions between the atoms. The
fluid exhibits characteristic short-range pair correlations and scattering structure,
as discussed in Section 10.7. The structure factor and the pair correlation function
for argon, as determined from neutron scattering, are shown in Figure 10.8. For
temperatures above the critical temperature T, one cannot distinguish between liquid
and vapor. The density in this supercritical phase is a smooth function of temperature
and pressure from the low-density vapor to the high-density liquid. Virial expansions
developed in Sections 10.1 through 10.3 aptly describe the supercritical region. Strictly
speaking, one can only distinguish between the liquid and vapor phases on the
liquid-vapor coexistence line since it is possible to evolve smoothly from one phase
to the other without crossing a phase boundary.

¢ The solid phase is a face-centered cubic crystal structure with long-range order, so the
scattering structure factor displays Bragg peaks as described in Section 10.7.B. The
thermodynamic properties of solid phases are described in Section 7.3.

All equilibrium thermodynamic properties within a single phase are analytic func-
tions of the thermodynamic parameters while phase transitions are defined as places in
the phase diagram where equilibrium thermodynamic properties are not analytic. Coexis-
tence lines, or first-order phase transition lines, separate different phases in the P-T phase
diagram as shown in Figure 4.2(a). Thermodynamic densities are discontinuous across
coexistence lines. This is displayed on the P-V phase diagram in Figure 4.2(b) by hori-
zontal tie lines that connect different values the specific volume takes in the two phases.
Generally, all densities such as the specific volume v = V /N, entropy per particle s = S/N,
internal energy density u = U/V, and so on, are discontinuous across first-order phase
transition lines. The slopes of the coexistence lines in the P-V phase diagram depend
on the latent heat of the transition and the specific volumes of the coexisting phases; see
Section 4.7. All three phases coexist at the triple point.

The liquid-vapor coexistence line extends from the triple point to the critical point at
the end of the first-order phase transition line. The specific volume is discontinuous on the
liquid—vapor coexistence line but the size of the discontinuty vanishes at the critical point
where the specific volume is v.; see Figure 4.2(b). All densities are continuous functions
of T and P through the critical point. For this reason, critical points are called continuous
transitions or, sometimes, second-order phase transitions. Even though thermodynamic
densities are continuous, the thermodynamic behavior at the critical point is nonanalytic
since, for example, the specific heat and isothermal compressibility both diverge at the
critical point. Another characteristic property of critical points is the divergence of the cor-
relation length, which results in a universal behavior of critical points for broad classes of
materials. The theory of critical points is developed in Chapters 12, 13, and 14.

Classical statistical mechanics provides a framework for understanding the phase dia-
grams and thermodynamic properties of a wide variety of materials. However, quantum
mechanics and quantum statistics play an important role at low temperatures when the
size of the thermal deBroglie wavelength A = h/v27mkT is of the same order as the



108 Chapter 4 » The Grand Canonical Ensemble

_S//
Ps

superfluid

A TC
T

P, L

'
1
'
1
'
'
l
'
'
'
'
'
'
'
'
'
'
'
'
'
l
'
'

FIGURE 4.3 Sketch of the P-T phase diagram for helium-4. The letters S, L, and V denote solid, liquid, and vapor
phases. The critical point is T, =5.19K and P, = 227kPa = 2.24 atm. The solid-liquid coexistence curve starts at
P;=2.5MPa =25atm at T = 0K and does not intersect the liquid—vapor coexistence curve. The A-line is the

continuous phase transition between the normal liquid and the superfluid phase. The superfluid phase transition
temperature at the liquid-vapor coexistence line is T = 2.18K.

average distance between molecules. This is the case with liquid helium at temperatures
below a few degrees kelvin. The phase diagram of helium-4 is shown in Figure 4.3. Some
aspects of the phase diagram are similar to the phase diagram of argon. Both helium
and argon have liquid—vapor coexistence lines that end in critical points and both have
crystalline solid phases at low temperatures.

Three differences between the two phase diagrams are most notable: the solid phase
for helium only exists for pressures greater than P; = 2.5 GPa = 25atm, the liquid phase of
helium extends all the way to zero temperature, and helium-4 exhibits a superfluid phase
below T; =2.18K. The superfluid phase exhibits remarkable properties: zero viscosity,
quantized flow, propagating heat modes, and macroscopic quantum coherence. This
extraordinary behavior is due to the Bose-Einstein statistics of “He atoms and a Bose-
Einstein condensation into a macroscopic quantum state as discussed in Sections 7.1 and
11.2 through 11.6. Even the solid phase of helium-4 shows evidence of a macroscopic
quantum state with the observation of a “supersolid” phase by Kim and Chan (2004).

By contrast, 3He atoms obey Fermi-Dirac statistics and display very different behav-
iors from “He atoms at low temperatures. The geometry of the phase diagram of helium-3
is similar to that of helium-4 except that the critical temperature is lower (T, = 3.35K
compared to 5.19K) and the solid phase forms at 30 atm of pressure rather than 25atm.
The dramatic difference is the lack of a superfluid phase near 1K in helium-3. Helium-
3 remains a normal liquid all the way down to about 10 millikelvin. The properties of the
normal liquid phase of helium-3 are described by the theory of degenerate Fermi gases and
the Fermi liquid theory developed in Chapter 8 and Sections 11.7 and 11.8. The superfluid
state that forms at millikelvin temperatures is the result of Bardeen, Cooper, and Schrieffer

(BCS) p-wave pairing between atoms near the Fermi surface; this pairing is discussed in
Section 11.9.
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4.7 Phase equilibrium and the Clausius—Clapeyron
equation

The thermodynamic properties of the phases of a material determine the geometry of the
phase diagram. In particular, the Gibbs free energy

G(N,P,T) = U —TS+PV = A+ PV = u(P,T)N 1)

determines the locations of the phase boundaries. Note that the chemical potential is the
Gibbs free energy per molecule; see Problem 4.6 and Appendix H. Consider a cylinder con-
taining NV molecules held at constant pressure P and constant temperature 7, that is, in an
isothermal, isobaric assembly. Suppose the cylinder initially contains two phases: vapor
(A) and liquid (B) so that the total number of molecules is N = Ny + Np and the Gibbs
free energy is G = Gao(Na, P, T) + Gg(INg, P, T). If the two phases do not coexist at this pres-
sure and temperature, the numbers of molecules in each phase will change as the system
approaches equilibrium. As the number of molecules in each phase changes, the Gibbs
free energy changes by an amount

dG = <%)T,pdNA+ (%)T,PdNB = (1A — uB)dNa, 2
where dN, is the change in the number of molecules in phase A.

The Gibbs free energy is minimized at equilibrium, so dG < 0. If ua > ug, the number
of molecules in phase B will increase and the number in phase A will decrease as the sys-
tem approaches equilibrium. If ua < up, the number of molecules in phase A will increase
and the number in phase B will decrease. If the chemical potentials are equal, the Gibbs
free energy is independent of the number of molecules in the two phases. Therefore, the
chemical potentials are equal at coexistence:

HA = UB- 3)

Let’s consider the familiar example of water. At normal pressures and temperatures,
water has three phases: liquid water, solid ice, and water vapor, and its P-T phase diagram
is similar to that shown for argon in Figure 4.2(a) — the P-V phase diagram for water is
somewhat different because the density of the liquid phase is larger than the density of
the solid ice phase; see Problems 4.15 and 4.20. At P = 1 atm, water and water vapor coex-
istat T =100°C, the “boiling point” — while boiling is a nonequilibrium process, boiling
begins at the temperature at which the equilibrium vapor pressure is equal to the local
atmospheric pressure. Consider a two-phase sample of water and water vapor at T = 99°C.
A two-phase sample containing both liquid water and water vapor is easy to create in a
constant volume assembly. If there is sufficient volume available, liquid water will evapo-
rate until the water vapor pressure reaches the coexistence pressure at that temperature
P,(99°C) = 0.965atm. If the applied pressure is then increased to, and held constant at,
P = 1atm while maintaining a constant temperature of T = 99°C, the system will be out
of equilibrium. At constant pressure, the system will return to equilibrium by decreasing
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its volume as water vapor condenses into the liquid phase until the the system is com-
pletely liquid water. This lowers the Gibbs free energy until it has the equilibrium value
determined by the chemical potential of liquid water at this pressure and temperature.

On the other hand, if T=100°C and P = 1atm, the chemical potentials of the liquid
and vapor phases are equal, so any combination of water vapor and liquid water has the
same Gibbs free energy. The proportion of water and vapor will change as heat is added
or removed. The latent heat of vaporization of water L, = 540 cal/g = 2260kJ /kg is the heat
needed to convert liquid into vapor.

The coexistence pressure P, (T) defines the phase boundary between any two phases
in the P-T plane, as shown in Figure 4.2(a). From equation (3), the coexistence pressure
obeys

paPo (1), T) = pg(Po (1), T). 4

The derivatives of the chemical potentials are related by

3MA> <3MA> dP, (8/~LB> <3MB) dP;
— | +( =5 === ) +|=5n ) )
(BTP aP )5 dT oT Jp "\ 0P ) dT
while the entropy per particle s = S/N and specific volume v = V/N are given by
__ (%
= <8T)P’ (©2)
(o) .
'= <8P>T’ (6b)

see equation (4.5.6). Equations (5) and (6) give the Clausius—Clapeyron equation

dP, sp—sa As L
dT ~ vg—vs Av  TAV

Q]

where L = T As is the latent heat per particle. The slope of the coexistence curve depends
on the discontinuities of the entropy per particle and the volume per particle. Equation (7)
applies very generally to all first-order phase transitions and can be used to determine
the coexistence curve as a function of temperature; see Section 4.4, Problems 4.11, and
4.14 through 4.16.

At a triple point, the chemical potentials of three phases are equal:

HA = [AB = KC- ®)

The slopes of the three coexistence lines that define the triple point are related since
Asag+ Aspc + Asca =0 and Avag+ Avge + Aves = 0. This guarantees that each coexis-
tence line between two phases at the triple point “points into” the third phase; see
Problem 4.17.
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Problems

4.1.

4.2,

4.3.

4.4.

4.5.

4.6.

4.7.

Show that the entropy of a system in the grand canonical ensemble can be written as

S= —kZPr,S InP;,
s

where P, ; is given by equation (4.1.9).

In the thermodynamic limit (when the extensive properties of the system become infinitely large,
while the intensive ones remain constant), the g-potential of the system may be calculated by
taking only the largest term in the sum

> QN (V, T).

Ny=0

Verify this statement and interpret the result physically.

A vessel of volume V© contains N©®© molecules. Assuming that there is no correlation whatsoever

between the locations of the various molecules, calculate the probability, P(NV, V), that a region of

volume V (located anywhere in the vessel) contains exactly N molecules.

(@) Showthat N=N©pand (AN);ms. = (NOp1 —p)}'/%, where p=V/ VO,

(b) Show that ifboth N©©p and N© (1 — p) are large numbers, the function P(N, V) assumes a
Gaussian form.

(c) Further,if p « 1and N « N, show that the function P(N, V) assumes the form of a Poisson

distribution:
@Y
P(N)=e¢e N
The probability that a system in the grand canonical ensemble has exactly N particles is given by
2NV, T)
N)y=——F—.
PN =4 v,T)

Verify this statement and show that in the case of a classical, ideal gas the distribution of particles
among the members of a grand canonical ensemble is identically a Poisson distribution. Calculate
the root-mean-square value of (AN) for this system both from the general formula (4.5.3) and from
the Poisson distribution, and show that the two results are the same.

Show that expression (4.3.20) for the entropy of a system in the grand canonical ensemble can also
be written as

a
S=k [ﬁ(Tq)]/L,V.

Define the isobaric partition function
1 oo
WP, T) = / Qn(V, Tye PPV av.
0

Show that in the thermodynamic limit the Gibbs free energy (4.7.1) is proportional to In Yx (P, T).
Evaluate the isobaric partition function for a classical ideal gas and show that PV = NkT. [The
factor of the cube of the thermal deBroglie wavelength, 13, serves to make the partition function
dimensionless and does not contribute to the Gibbs free energy in the thermodynamic limit.]
Consider a classical system of noninteracting, diatomic molecules enclosed in a box of volume V
at temperature 7. The Hamiltonian of a single molecule is given by

H(r1,12,p1,P,) = L(pz+lnz)+ 1K|r1 —r2f%
12 2m 1 2 2

Study the thermodynamics of this system, including the dependence of the quantity (r2,) on T.
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4.8.

4.9.

4.10.

4.12.

4.13.

4.14.

4.16.

Chapter 4 » The Grand Canonical Ensemble

Determine the grand partition function of a gaseous system of “magnetic” atoms (with J = % and
g = 2) that can have, in addition to the kinetic energy, a magnetic potential energy equal to upH
or —upH, depending on their orientation with respect to an applied magnetic field H. Derive an
expression for the magnetization of the system, and calculate how much heat will be given off by
the system when the magnetic field is reduced from H to zero at constant volume and constant
temperature.

Study the problem of solid—vapor equilibrium (Section 4.4) by setting up the grand partition
function of the system.

A surface with Ny adsorption centers has N(< Np) gas molecules adsorbed on it. Show that the
chemical potential of the adsorbed molecules is given by

N
uw=kThh ————,
(No —N)a(T)
where a(T) is the partition function of a single adsorbed molecule. Solve the problem by
constructing the grand partition function as well as the partition function of the system.
[Neglect the intermolecular interaction among the adsorbed molecules.]

. Study the state of equilibrium between a gaseous phase and an adsorbed phase in a single-

component system. Show that the pressure in the gaseous phase is given by the Langmuir
equation

Pg= x (a certain function of temperature),

1-6
where 6 is the equilibrium fraction of the adsorption sites that are occupied by the adsorbed
molecules.

Show that for a system in the grand canonical ensemble

— F10 Q—
{(NE)-NE) = (—) (AN)2.
N )1y

Define a quantity J as
J=E-Nu=TS—-PV.

Show that for a system in the grand canonical ensemble

2
— U —
2 _ 112 _ 2
(A? =kT CV+{(3N>T,V ,u} (AN)-.

Assuming that the latent heat of vaporization of water Ly = 2260k]J /kg is independent of
temperature and the specific volume of the liquid phase is negligible compared to the specific
volume of the vapor phase, vyapor = kT/P, (T), integrate the Clausius-Clapeyron equation (4.7.7)
to obtain the coexistence pressure as a function of temperature. Compare your result to the
experimental vapor pressure of water from the triple point to 200°C. The equilibrium vapor
pressure at 373K is 101kPa = 1 atm.

. Assuming that the latent heat of sublimation of ice Ls = 2500k]J /kg is independent of temperature

and the specific volume of the solid phase is negligible compared to the specific volume of the
vapor phase, vyapor = kT /P, (T), integrate the Clausius—Clapeyron equation (4.7.7) to obtain the
coexistence pressure as a function of temperature. Compare your result to the experimental vapor
pressure of ice from T = 0 to the triple point. The equilibrium vapor pressure at the triple point is
612Pa.

Calculate the slope of the solid-liquid transition line for water near the triple point T = 273.16K,
given that the latent heat of melting is 80 cal/g, the density of the liquid phase is 1.00g/cm?, and
the density of the ice phase is 0.92g/cm?. Estimate the melting temperature at P = 100 atm.
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. Show that the Clausius—Clapeyron equation (4.7.7) guarantees that each of the coexistence curves

at the triple point of a material “points into” the third phase; for example, the slope of the
solid-vapor coexistence line has a value in-between the slopes of the the the solid-liquid and
liquid—vapor coexistence lines.

. Sketch the P-V phase diagram for helium-4 using the sketch of the P-T phase diagram in

Figure 4.3.

. Derive the equivalent of the Clausius—Clapeyron equation (4.7.7) for the slope of the coexistence

chemical potential as a function of temperature. Use the fact that the pressures P(u, T) in two
different phases are equal on the coexistence curve.

Sketch the P-T and P-V phase diagrams of water, taking into account the fact that the mass
density of the liquid phase is larger than the mass density of the solid phase.
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Formulation of Quantum Statistics

The scope of the ensemble theory developed in Chapters 2 through 4 is extremely general,
though the applications considered so far were confined either to classical systems or to
quantum-mechanical systems composed of distinguishable entities. When it comes to
quantum-mechanical systems composed of indistinguishable entities, as most physical
systems are, considerations of the preceding chapters have to be applied with care. One
finds that in this case it is advisable to rewrite ensemble theory in a language that is more
natural to a quantum-mechanical treatment, namely the language of the operators and
the wavefunctions. Insofar as statistics are concerned, this rewriting of the theory may not
seem to introduce any new physical ideas as such; nonetheless, it provides us with a tool
that is highly suited for studying typical quantum systems. And once we set out to study
these systems in detail, we encounter a stream of new, and altogether different, physical
concepts. In particular, we find that the behavior of even a noninteracting system, such as
the ideal gas, departs considerably from the pattern set by the classical treatment. In the
presence of interactions, the pattern becomes even more complicated. Of course, in the
limit of high temperatures and low densities, the behavior of all physical systems tends
asymptotically to what we expect on classical grounds. In the process of demonstrating
this point, we automatically obtain a criterion that tells us whether a given physical sys-
tem may or may not be treated classically. At the same time, we obtain rigorous evidence in
support of the procedure, employed in the previous chapters, for computing the number,
T, of microstates (corresponding to a given macrostate) of a given system from the vol-
ume, o, of the relevant region of its phase space, namely I' ~ w/h/, where f is the number
of “degrees of freedom” in the problem.

5.1 Quantum-mechanical ensemble theory:
the density matrix

We consider an ensemble of & identical systems, where & > 1. These systems are char-
acterized by a (common) Hamiltonian, which may be denoted by the operator H. At time
t, the physical states of the various systems in the ensemble will be characterized by
the wavefunctions v (r;, ), where r; denote the position coordinates relevant to the sys-
tem under study. Let wk (r;, t) denote the (normalized) wavefunction characterizing the
physical state in which the kth system of the ensemble happens to be at time ¢; natu-
rally, k=1,2,...,s/. The time variation of the function I/Ik(t) will be determined by the

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00005-0 1 15
© 2011 Elsevier Ltd. All rights reserved.
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Schrédinger equation!
Hy* ) = imgF(1). ¢))

Introducing a complete set of orthonormal functions ¢,, the wavefunctions v *(¢) may be
written as

vE 0 =Y ay(On, )
n

where
akt) = / oivk(tde; 3)

here, ¢}, denotes the complex conjugate of ¢, while dr denotes the volume element of
the coordinate space of the given system. Clearly, the physical state of the kth system can
be described equally well in terms of the coefficients aX (). The time variation of these
coefficients will be given by

inak ) = ihf¢;;¢k(r)dr = /qﬁ;‘lﬁwk(t)dr
= / ¢;I€I{Za’,§1<r>¢m}dr
m
= Humap (1), @)
m

where

Hpm = / ¢ Hpmdr. (5)

The physical significance of the coefficients a¥(z) is evident from equation (2). They are
the probability amplitudes for the various systems of the ensemble to be in the various
states ¢; to be practical, the number |cl’,“l(t)|2 represents the probability that a measure-
ment at time ¢ finds the kth system of the ensemble to be in the particular state ¢;. Clearly,
we must have

Mlak@mF =1 (forallk). 6)

We now introduce the density operator p(t), as defined by the matrix elements

N

pmn(t) = % > [a’,‘n(t)a’ft*(t)] ; )
k=1

clearly, the matrix element p;;,(¢) is the ensemble average of the quantity a,,(t)a}(?),
which, as a rule, varies from member to member in the ensemble. In particular, the
diagonal element p,;,(f) is the ensemble average of the probability |a,(1)|?, the latter

1For simplicity of notation, we suppress the coordinates r; in the argument of the wavefunction y*.
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itself being a (quantum-mechanical) average. Thus, we encounter here a double-averaging
process — once due to the probabilistic aspect of the wavefunctions and again due to the
statistical aspect of the ensemble. The quantity p,,(f) now represents the probability that
a system, chosen at random from the ensemble, at time ¢, is found to be in the state ¢,. In
view of equations (6) and (7),

> omn=1. ®
n

We shall now determine the equation of motion for the density matrix p, (). We
obtain, with the help of the foregoing equations,

N
() = - 3 [in [k a0+ abwak o]
k=1

N
1
=N > H > Huaf (0 }a’,“,*(t) - a’,‘n(t){ ZH;’;laf*(t)”
k=1t% ;

= Z{Hmlpln(t) — pmi(OHip}
!

= (ﬁﬁ_ﬁﬁ)mm (9)

here, use has been made of the fact that, in view of the Hermitian character of the operator
H,H}, = Hp,. Using the commutator notation, equation (9) may be written as

ihp=1H,p]_. (10)

Equation (10) is the quantum-mechanical analog of the classical equation (2.2.10) of
Liouville. As expected in going from a classical equation of motion to its quantum-
meAchaIAlical counterpart, the Poisson bracket [p, H] has given place to the commutator
(oH — Hp)/ih.

If the given system is known to be in a state of equilibrium, the corresponding ensemble
must be stationary, thatis, o, = 0. Equations (9) and (10) then tell us that, for this to be the
case, (i) the density operator 5 must be an explicit function of the Hamiltonian operator &
(for then the two operators will necessarily commute) and (ii) the Hamiltonian must not
depend explicitly on time, that is, we must have (i) p = ,5(H ) and (ii) H = 0. Now, if the basis
functions ¢, were the eigenfunctions of the Hamiltonian itself, then the matrices H and
p would be diagonal:

Hmn = Endmn,  pmn = Pndmn.- (11)?
2It may be noted that in this (so-called energy) representation the density operator p may be written as

A=Y Ibn)onidnl, (12)

for then

k1= Y _(Pk|bn) on(dnldt) =Y Sknndnr = picdir-

n
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The diagonal element p,;, being a measure of the probability that a system, chosen at ran-
dom (and at any time) from the ensemble, is found to be in the eigenstate ¢, will naturally
depend on the corresponding eigenvalue E;, of the Hamiltonian; the precise nature of this
dependence is, however, determined by the “kind” of ensemble we wish to construct.

In any representation other than the energy representation, the density matrix may or
may not be diagonal. However, quite generally, it will be symmetric:

Pmn = Pnm- (13)

The physical reason for this symmetry is that, in statistical equilibrium, the tendency of a
physical system to switch from one state (in the new representation) to another must be
counterbalanced by an equally strong tendency to switch between the same states in the
reverse direction. This condition of detailed balancing is essential for the maintenance of
an equilibrium distribution within the ensemble.

Finally, we consider the expectation value of a physical quantity G, which is dynami-
cally represented by an operator G. This will be given by

1 & ks A k
(G) = W};/u/ *Gykdr. (14)

In terms of the coefficients a¥,

1 N
G =— > { a’,g*a’,;c,,m] (15)
k=1Lm,n
where
Gnm = / ¢ Gomdr. (16)

Introducing the density matrix p, equation (15) becomes

(G)= ZPmnGnm = Z(ﬁé)mm = Tr(ﬁé) a7
m

m,n
Taking G= i, where 1 is the unit operator, we have
Tr(p) =1, (18)

which is identical to (8). It should be noted here that if the original wavefunctions ¥* were
not normalized then the expectation value (G) would be given by the formula

Tr(5G)
G =
Tr(p)

19)
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instead. In view of the mathematical structure of formulae (17) and (19), the expectation
value of any physical quantity G is manifestly independent of the choice of the basis {¢,},
as it indeed should be.

5.2 Statistics of the various ensembles
5.2.A The microcanonical ensemble

The construction of the microcanonical ensemble is based on the premise that the sys-
tems constituting the ensemble are characterized by a fixed number of particles N, a fixed
volume V, and an energy lying within the interval (E—3A,E+1A), where A < E. The
total number of distinct microstates accessible to a system is then denoted by the sym-
bol I'(N, V,E; A) and, by assumption, any one of these microstates is as likely to occur as
any other. This assumption enters into our theory in the nature of a postulate and is often
referred to as the postulate of equal a priori probabilities for the various accessible states.

Accordingly, the density matrix p, (which, in the energy representation, must be a
diagonal matrix) will be of the form

Pmn = Pndmn, (1)
with

1/T for each of the accessible states,
on = 2)
0 for all other states;

the normalization condition (5.1.18) is clearly satisfied. As we already know, the thermody-
namics of the system is completely determined from the expression for its entropy which,
in turn, is given by

S=kInT. (3)

Since I', the total number of distinct, accessible states, is supposed to be computed
quantum-mechanically, taking due account of the indistinguishability of the particles right
from the beginning, no paradox, such as Gibbs’, is now expected to arise. Moreover, if
the quantum state of the system turns out to be unique (I' = 1), the entropy of the sys-
tem will identically vanish. This provides us with a sound theoretical basis for the hitherto
empirical theorem of Nernst (also known as the third law of thermodynamics).

The situation corresponding to the case I' = 1 is usually referred to as a pure case. In
such a case, the construction of an ensemble is essentially superfluous, because every sys-
tem in the ensemble has got to be in one and the same state. Accordingly, there is only one
diagonal element p;;, that is nonzero (actually equal to unity), while all others are zero. The
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density matrix, therefore, satisfies the relation
0% = p. (4)

In a different representation, the pure case will correspond to
1 N
o= Db’ = ®
k=1

because all values of k are now literally equivalent. We then have

2
Pin =D OmiPln = Y _ Am@; aiay,
I 1

= ama;, (becauseZa;‘al = 1)

l

= Pmn- (6)

Relation (4) thus holds in all representations.

A situation in which " > 1 is usually referred to as a mixed case. The density matrix, in
the energy representation, is then given by equations (1) and (2). If we now change over to
any other representation, the general form of the density matrix should remain the same,
namely (i) the off-diagonal elements should continue to be zero, while (ii) the diagonal
elements (over the allowed range) should continue to be equal to one another. Now, had
we constructed our ensemble on a representation other than the energy representation
right from the beginning, how could we have possibly anticipated ab initio property (i)
of the density matrix, though property (ii) could have been easily invoked through a pos-
tulate of equal a priori probabilities? To ensure that property (i), as well as property (ii),
holds in every representation, we must invoke yet another postulate, namely the postulate
of random a priori phases for the probability amplitudes aX, which in turn implies that
the wavefunction wk, for all k, is an incoherent superposition of the basis {¢,}. As a con-
sequence of this postulate, coupled with the postulate of equal a priori probabilities, we
would have in any representation

N N
1 1 i(ok _ok
Pmn = N Zalrcnalrct* =N Z |a|zel(9m Gn)
k=1 k=1
= c<ei(9’]$179i]1c)>

= Cdmn, (7)

as it should be for a microcanonical ensemble.
Thus, contrary to what might have been expected on customary grounds, to secure the
physical situation corresponding to a microcanonical ensemble, we require in general two
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postulates instead of one! The second postulate arises solely from quantum-mechanics
and is intended to ensure noninterference (and hence a complete absence of correlations)
among the member systems; this, in turn, enables us to form a mental picture of each
system of the ensemble, one at a time, completely disentangled from other systems.

5.2.B The canonical ensemble

In this ensemble the macrostate of a member system is defined through the parameters
N, V, and T; the energy E is now a variable quantity. The probability that a system, chosen
at random from the ensemble, possesses an energy E; is determined by the Boltzmann
factor exp (—BE;), where g =1/kT; see Sections 3.1 and 3.2. The density matrix in the
energy representation is, therefore, taken as

Omn = Pnmn, 8)
with
pn = Cexp (—BEp); n=0,1,2,... 9

The constant C is determined by the normalization condition (5.1.18), whereby

1 1
C: = ,
2_exp(=BEn)  Qn(B)
n

(10)

where Qn(B) is the partition function of the system. In view of equations (5.1.12), see
footnote 2, the density operator in this ensemble may be written as

1
p Zn o) e !

1 A
= —PH n/\Pn
B ;w }(fnl
N —BH
L en_ (11)
Qn(B) Tr (e FH)

for the operator ), |¢n)(¢n| is identically the unit operator. It is understood that the
operator exp (—gH) in equation (11) stands for the sum

ad (BH)I
S i I,{) : (12)

j=0
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The expectation value (G)y of a physical quantity G, which is represented by an operator
G, is now given by
. 1 A g
G)n = Tr(pG) = ——Tr(Ge PH
Gy =Tr(pG) = ZsTr(Ge™)
Tr(@e*ﬁﬁ )
=— (13)
Tr(e—FH)
the suffix N here emphasizes the fact that the averaging is being done over an ensemble
with N fixed.

5.2.C The grand canonical ensemble

In this ensemble the density operator o operates on a Hilbert space with an indefi-
nite number of particles. The density operator must therefore commute not only with
the Hamiltonian operator H but also with a number operator 7 whose eigenvalues are
0,1,2,.... The precise form of the density operator can now be obtained by a straightfor-
ward generalization of the preceding case, with the result

1

—B(H—uh) 14
auv,n° ’ (14

b=
where

Qw,V,T)= Ze—ﬁ(Er—V-Ns) — Tr{e_ﬁ(H_“ﬁ)}. (15)

s
The ensemble average (G) is now given by

1

- Ap—BH pBuit
= 8GV T)Tr(Ge ePrm)

(G)

> Z2N(GNQN(B)
= N=0 , (16)

o0

> Z2VON(B)

N=0

where z(= eP*) is the fugacity of the system while (G) is the canonical-ensemble average,
as given by equation (13). The quantity @(u, V, T) appearing in these formulae is, clearly,
the grand partition function of the system.

5.3 Examples
5.3.A An electron in a magnetic field

We consider, for illustration, the case of a single electron that possesses an intrinsic spin
%h& and a magnetic moment up, where ¢ is the Pauli spin operator and up = efi/2mc.
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The spin of the electron can have two possible orientations, 4 or |, with respect to an
applied magnetic field B. If the applied field is taken to be in the direction of the z-axis, the
configurational Hamiltonian of the spin takes the form

H=—11,(6-B) = —u,Bé,. o))

In the representation that makes 6, diagonal, namely

01 0 —i 10
5 = y 5 = y 5 = y 2

the density matrix in the canonical ensemble would be

(1)
Tr(e~PH)

1 ePrsB 0
= eﬁMBB—’—e_ﬂMBB 0 e_ﬁMBB ’

We thus obtain for the expectation value o,

(p) =
3)

eﬁMBB _ e_ﬁMBB

(0z) =Tr(p6z) = =tanh(Bu,B), 4

eﬁMBB + e_ﬁU«BB

in perfect agreement with the findings of Sections 3.9 and 3.10.

5.3.B A free particle in a box

We now consider the case of a free particle, of mass m, in a cubical box of side L. The
Hamiltonian of the particle is given by

- h? I A R
A=—— v [+ 4+ 2, 5
2m 2m <8x2 + ay? + 022 ©)

while the eigenfunctions of the Hamiltonian that satisfy periodic boundary conditions,

¢(x+L,y,2) =¢x,y+Lz2)=¢x,y,2+L)

=¢(x,),2), 6)
are given by
1
PE(r) = 1575 exp(ik 1), (7)

the corresponding eigenvalues E being

212
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and the corresponding wave vector k being

2
k= (ky, ky, kz) = Tﬂ(nx» 1y, Nz); )

the quantum numbers ny, n,, and n, must be integers (positive, negative, or zero).
Symbolically, we may write

_27t

k »
I n

(10
where n is a vector with integral components 0,+1,+2,....

We now proceed to evaluate the density matrix (o) of this system in the canonical
ensemble; we shall do so in the coordinate representation. In view of equation (5.2.11),
we have

(rle P iK'y = 3 (riEye PE(EIr)
E

(1m
=Y e PPepngpr).
E
Substituting from equation (7) and making use of relations (8) and (10), we obtain
_BH, ./ 1 /37:"2 . /
(rle PH|ry = 3 Xk:exp |:—2mk2 +ik-(r—r )i|
~ /ex B e | dk
23 ] P " om

m 3/2 m /12

= (W> exp [—Zﬂh2|r—r| ], (12)

see equations (B.41) and (B.42) in Appendix B. It follows that

Tr(e ) = / (rlePH |rddr

m \3/2
=V<W) . (13)

The expression in equation (13) is indeed the partition function, Q;(8), of a single particle
confined to a box of volume V; see equation (3.5.19). Dividing (12) by (13), we obtain for
the density matrix in the coordinate representation

N _l _ m _ 12
(r|p|r>_Vexp[ 2ﬁh2|r r| } (14)

As expected, the matrix p, ,» is symmetric between the states r and r’. Moreover, the
diagonal element (r|p|r), which represents the probability density for the particle to be in
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the neighborhood of the point r, is independent of r; this means that, in the case of a sin-
gle free particle, all positions within the box are equally likely to obtain. A nondiagonal
element (r|p|r’), on the other hand, is a measure of the probability of “spontaneous tran-
sition” between the position coordinates r and r’ and is therefore a measure of the relative
“intensity” of the wave packet (associated with the particle) at a distance |r — 7’| from the
center of the packet. The spatial extent of the wave packet, which is a measure of the uncer-
tainty involved in locating the position of the particle, is clearly of order h/(mkT)'/?; the
latter is also a measure of the mean thermal wavelength of the particle. The spatial spread
found here is a purely quantum-mechanical effect; quite expectedly, it tends to vanish at
high temperatures. In fact, as 8 — 0, the behavior of the matrix element (14) approaches
that of a delta function, which implies a return to the classical picture of a point particle.

Finally, we determine the expectation value of the Hamiltonian itself. From equa-
tions (5) and (14), we obtain

2
(Hy =Tr(Hp) = h /{Vzexp[— - Ir—r/lz]} d3r
r=r’

- 2mV 282
_ L _1 _ 42 _ m 2 3
= ZﬂV/{[S ﬂh2|r r| ]exp[ 2ﬂh?_lr r| ]}r:r,d r
3 3

which was indeed expected. Otherwise, too,

Tr(He #H ;
_ Ir(He™™) —ilnTr(e—ﬁH) (16)
Tr(e—#H) 9B

which, on combination with (13), leads to the same result.

5.3.C A linear harmonic oscillator

Next, we consider the case of a linear harmonic oscillator whose Hamiltonian is given by

. R 9% 1
H=-——— + -mo*¢, 17
2m 9 +5me’q (17
with eigenvalues
1
Enz(n+§)hw; n=0,1,2,... (18)

and eigenfunctions
@)1/4 Hn®) /2 19)

on(@) = ( ) G
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where
and
Hy(§) = (-1 (2)%*2. 1)

The matrix elements of the operator exp (—H) in the g-representation are given by

(e Piq) =3 e PEngu(@én(q)

n=0
1/2 P Ho(EH, (£
_ (%) o~ (1/2)E%+872) » {e—(n+l/2)ﬂhw n(f?zinfz(é ) } 22)

n=0

The summation over n is somewhat difficult to evaluate; nevertheless, the final result is®

. 1/2
—BH | /\ _ mw
(dle |q>_[2nhsinh(ﬂhw)}
_ o /N2 Bho N2 Bhw
xexp[ M {(q+q) ‘[anh(—2 >+(q q) coth(—2 )”, (23)
which gives

Tr(e #H) = / (qle " \qydq

o 12 F mog? Bhw
- |serarar ] | e"p[‘ - tanh (55 [

1 o—(1/2)Bho

B ZSinh(%ﬂhw) T 1 hhe

(24)

Expression (24) is indeed the partition function of a linear harmonic oscillator; see
equation (3.8.14). At the same time, we find that the probability density for the oscillator
coordinate to be in the vicinity of the value g is given by

mwtanh (l ﬂhw) V2 2 A
(q1plq) = |:2} exp [—qutanh(ﬂwﬂ: (25)
wh h 2

3The mathematical details of this derivation can be found in Kubo (1965, pp. 175-177).
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we note that this is a Gaussian distribution in g, with mean value zero and root-mean-
square deviation

1/2
h
qrm.s. = . (26)
2mwtanh (%ﬁhw)

The probability distribution (25) was first derived by Bloch in 1932. In the classical limit
(Bhw « 1), the distribution becomes purely thermal — free from quantum effects:

ma? \ ' mw?q®

with dispersion (kT/mw?)'/2. At the other extreme (B%w > 1), the distribution becomes
purely quantum-mechanical — free from thermal effects:
} ) (28)

with dispersion (h/2mw)'/?. Note that the limiting distribution (28) is precisely the one
expected for an oscillator in its ground state (n = 0), that is one with probability density
¢g (9); see equations (19) through (21).

In view of the fact that the mean energy of the oscillator is given by

R mwn 1/2 Mwg?
@bl ~ (2r) exp[— 4

wh

0 f 1 1
__ - —BH\ _ -
() =~ nTr (e P7) = Shocoth ( : ﬂhw), (29)
we observe that the temperature dependence of the distribution (25) is solely determined
by the expectation value (H). Actually, we can write

me? \/? ma?q?
(qlplg) = (Zn(H)) exp [— 2(H) :|, (30)
with
17\ 172
qrm.s. = (#) . (31)

It is now straightforward to see that the mean value of the potential energy (%mwzqz) of
the oscillator is %(H ); accordingly, the mean value of the kinetic energy (p?/2m) will also
be the same.
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5.4 Systems composed of indistinguishable
particles

We shall now formulate the quantum-mechanical description of a system of N identical
particles. To fix ideas, we consider a gas of noninteracting particles; the findings of this
study will be of considerable relevance to other systems as well.

Now, the Hamiltonian of a system of N noninteracting particles is simply a sum of the
individual single-particle Hamiltonians:

N
H(q,p)=)_Hi@qip; o))

i=1

here, (g;, p;) are the coordinates and momenta of the ith particle while H; is its Hamilto-
nian.* Since the particles are identical, the Hamiltonians H i(i=1,2,...,N) are formally the
same; they only differ in the values of their arguments. The time-independent Schrédinger
equation for the system is

Hyr(q) = Eve(q), @)

where E is an eigenvalue of the Hamiltonian and y'r(q) the corresponding eigenfunction.
In view of (1), we can write a straightforward solution of the Schrédinger equation, namely

N
vE@ = [ u @, 3)
i=1

with
N
E= Zé‘i; (4)
i=1

the factor u,,(gq;) in (3) is an eigenfunction of the single-particle Hamiltonian H i(qi, pi),
with eigenvalue ¢;:

Hiug, (q7) = eitte; (). (5)

Thus, a stationary state of the given system may be described in terms of the single-particle
states of the constituent particles. In general, we may do so by specifying the set of num-
bers {n;} to represent a particular state of the system; this would imply that there are n;
particles in the eigenstate characterized by the energy value ¢;. Clearly, the distribution set

*We are studying here a single-component system composed of “spinless” particles. Generalization to a system
composed of particles with spin and to a system composed of two or more components is quite straightforward.
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{n;} must conform to the conditions
Z ni=N (6)
i
and

> “nje;=E. @)
i

Accordingly, the wavefunction of this state may be written as

ny ny+np
ve@=[]wmm ] wm.., (8)
m=1 m=nj+1

where the symbol u;(m) stands for the single-particle wavefunction u,, (qm).

Now, suppose we effect a permutation among the coordinates appearing on the right
side of (8); as a result, the coordinates (1,2,...,N) get replaced by (P1, P2,...,PN), say. The
resulting wavefunction, which we may call Py g(q), will be

ny ny+ny
Pyg@=[Jwm®m) [] wPm... ©)
m=1 m=nj+1

In classical physics, where the particles of a given system, even though identical, are
regarded as mutually distinguishable, any permutation that brings about an interchange
of particles in two different single-particle states is recognized to have led to a new, physi-
cally distinct, microstate of the system. For example, classical physics regards a microstate
in which the so-called 5th particle is in the state u; and the so-called 7th particle in the
state u;(j # i) as distinct from a microstate in which the 7th particle is in the state u; and
the 5th particle in the state u;. This leads to

N!

— (10)
nlll’lg!...

(supposedly distinct) microstates of the system, corresponding to a given mode of distri-
bution {n;}. The number (10) would then be ascribed as a “statistical weight factor” to
the distribution set {n;}. Of course, the “correction” applied by Gibbs, which has been
discussed in Sections 1.5 and 1.6, reduces this weight factor to

Welni} = (1D

nl! n2! e
And the only way one could understand the physical basis of that “correction” was in terms
of the inherent indistinguishability of the particles.

According to quantum physics, however, the situation remains unsatisfactory even
after the Gibbs correction has been incorporated, for, strictly speaking, an interchange
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among identical particles, even if they are in different single-particle states, should not
lead to a new microstate of the system! Thus, if we want to take into account the indistin-
guishability of the particles properly, we must not regard a microstate in which the “5th”
particle is in the state u; and the “7th” in the state u; as distinct from a microstate in which
the “7th” particle is in the state u; and the “5th” in the state u; (even if i # j), for the labeling
of the particles as No. 1, No. 2, and so on (which one often resorts to) is at most a matter of
convenience — it is not a matter of reality. In other words, all that matters in the descrip-
tion of a particular state of the given system is the set of numbers #; that tell us how many
particles there are in the various single-particle states u;; the question, “which particle is
in which single-particle state?” has no relevance at all.

Accordingly, the microstates resulting from any permutation P among the N parti-
cles (so long as the numbers n; remain the same) must be regarded as one and the
same microstate. For the same reason, the weight factor associated with a distribution set
{n;}, provided that the set is not disallowed on some other physical grounds, should be
identically equal to unity, whatever the values of the numbers n; may be:

Wylni}=1. (12)°

Indeed, if for some physical reason the set {n;} is disallowed, the weight factor Wy for that
set should be identically equal to zero; see, for instance, equation (19).

At the same time, a wavefunction of the type (8), which we may call Boltzmannian
and denote by the symbol g1, (q), is inappropriate for describing the state of a system
composed of indistinguishable particles because an interchange of arguments among the
factors u; and uj, where i # j, would lead to a wavefunction that is both mathematically and
physically different from the one we started with. Now, since a mere interchange of the
particle coordinates must not lead to a new microstate of the system, the wavefunction
¥E(q) must be constructed in such a way that, for all practical purposes, it is insensitive
to any interchange among its arguments. The simplest way to do this is to set up a lin-
ear combination of all the N! functions of the type (9) that obtain from (8) by all possible
permutations among its arguments; of course, the combination must be such that if a per-
mutation of coordinates is carried out in it, then the wavefunctions ¥ and Py must satisfy
the property

1Py =y (13)
This leads to the following possibilities:

Py =+ forall P, (14)

5It may be mentioned here that as early as in 1905 Ehrenfest pointed out that to obtain Planck’s formula for the
black-body radiation one must assign equal a priori probabilities to the various distribution sets {n;}.
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which means that the wavefunction is symmetric in all its arguments, or

+y  if Pis an even permutation,
Py = (15)°
—y if Pis an odd permutation,

which means that the wavefunction is antisymmetric in its arguments. We call these
wavefunctions s and ¥4, respectively; their mathematical structure is given by

¥s(q) = const. Y Py, () (16)
P

and

Va(g) = const. Y 8pPYpol, (4), (17)
P

where §p in the expression for 4 is +1 or —1 according to whether the permutation P is
even or odd.
We note that the function ¥4(q) can be written in the form of a Slater determinant:

wi(l) wi2) - ui(N)
Ltj(l) uj(Z) u](N)

Ya(q) =const.| ' R (18)
w@ w@) - uN)

where the leading diagonal is precisely the Boltzmannian wavefunction while the other
terms of the expansion are the various permutations thereof; positive and negative signs in
the combination (17) appear automatically as we expand the determinant. On interchang-
ing a pair of arguments (which amounts to interchanging the corresponding columns of
the determinant), the wavefunction 4 merely changes its sign, as it indeed should. How-
ever, if two or more particles happen to be in the same single-particle state, then the
corresponding rows of the determinant become identical and the wavefunction vanishes.”
Such a state is physically impossible to realize. We therefore conclude that if a system com-
posed of indistinguishable particles is characterized by an antisymmetric wavefunction,

An even (odd) permutation is one that can be arrived at from the original order by an even (odd) number of “pair
interchanges” among the arguments. For example, of the six permutations

1,2,3), 23D, L2, (1,32, 321, and (21,3),

of the arguments 1, 2, and 3, the first three are even permutations while the last three are odd. A single interchange,
among any two arguments, is clearly an odd permutation.

"This is directly related to the fact that if we effect an interchange among two particles in the same single-particle
state, then Py4 will obviously be identical to y4. At the same time, if we also have Py4 = —4, then ¥4 must be identically
Zero.
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then the particles of the system must all be in different single-particle states — a result
equivalent to Pauli’s exclusion principle for electrons.

Conversely, a statistical system composed of particles obeying an exclusion principle
must be described by a wavefunction that is antisymmetric in its arguments. The statistics
governing the behavior of such particles is called Fermi-Dirac, or simply Fermij statistics
and the constituent particles themselves are referred to as fermions. The statistical weight
factor W p {n;} for such a system is unity so long as the n; in the distribution set are either
0 or 1; otherwise, it is zero:

1 if Y n?=N,
i

Wep.{n} = (19)8
AR PRI SV
i

No such problems arise for systems characterized by symmetric wavefunctions: in partic-
ular, we have no restriction whatsoever on the values of the numbers r;. The statistics
governing the behavior of such systems is called Bose-Einstein, or simply Bose, statis-
tics and the constituent particles themselves are referred to as bosons.” The weight factor
Ws g.{n;} for such a system is identically equal to 1, whatever the values of the numbers n;:

Weelnit=1 n;=0,1,2,.... (20)

It should be pointed out here that there exists an intimate connection between the
statistics governing a particular species of particles and the intrinsic spin of the particles.
For instance, particles with an integral spin (in units of 7, of course) obey Bose-Einstein
statistics, while particles with a half-odd integral spin obey Fermi-Dirac statistics. Exam-
ples in the first category are photons, phonons, 7-mesons, gravitons, He*-atoms, and so
on, while those in the second category are electrons, nucleons (protons and neutrons),
p-mesons, neutrinos, He3-atoms, and so on.

Finally, it must be emphasized that, although we have derived our conclusions here
on the basis of a study of noninteracting systems, the basic results hold for interacting
systems as well. In general, the desired wavefunction ¢ (q) will not be expressible in terms
of the single-particle wavefunctions u;(q.,); nonetheless, it will have to be either of the
kind v¥s(q), satisfying equation (14), or of the kind v4(q), satisfying equation (15).

8Note that the condition Y; ?:N would be implies that all n; are either 0 or 1. On the other hand, if any of the n;
are greater than 1, the sum }; nl2 would be greater than N.

9Possibilities other than Bose-Einstein and Fermi-Dirac statistics can arise in which the wavefunction changes by a
complex phase factor e when particles are interchanged. For topological reasons, this can only happen in two dimen-
sions. Quasiparticle excitations with this property are called anyons and, if 6 is a rational fraction (other than 1 or 1/2)
of 27, are said to have fractional statistics and they play an important role in the theory of the fractional quantum Hall
effect; see Wilczek (1990) and Ezawa (2000).
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5.5 The density matrix and the partition
function of a system of free particles

Suppose that the given system, which is composed of N indistinguishable, noninteracting
particles confined to a cubical box of volume V, is a member of a canonical ensemble
characterized by the temperature parameter 8. The density matrix of the system in the
coordinate representation will be'°

(P, INIBIFY, . Ty) = r..ornle PR, L), o))

1
Qu(B)

where Qn(B) is the partition function of the system:
Q) =Tre#) = [, rle i) d . @

For brevity, we denote the vector r; by the letter i and the primed vector r; by 7. Further,
let yg(1,...,N) denote the eigenfunctions of the Hamiltonian, the suffix E representing the
corresponding eigenvalues. We then have

(L. Nle P, N =3 e PE[yp(L,. . Nyyg(L,. N, 3)
E

where the summation goes over all possible values of E; compare to equation (5.3.11).
Since the particles constituting the given system are noninteracting, we may express
the eigenfunctions ¥g(1,...,N) and the eigenvalues E in terms of the single-particle
wavefunctions u;(m) and the single-particle energies ¢;. Moreover, we find it advisable to
work with the wave vectors k; rather than the energies ¢;; so we write
R2K?  h?

E=— = (K + K+ k), @

where the k; on the right side are the wave vectors of the individual particles. Imposing
periodic boundary conditions, the normalized single-particle wavefunctions are

up(ry = V-2 explitk - r)}, 5)
with
k=2nV"13p, (6)

here, n stands for a three-dimensional vector whose components have values 0,+1,+2, ....
The wavefunction ¢ of the total system would then be, see equations (5.4.16)

YFor a general survey of the density matrix and its applications, see ter Haar (1961).
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and (5.4.17),

YLy, Ny = (ND V2 Y ZpPlug, (1) gy (N}, @
P

where the magnitudes of the individual k; are such that
(k5 +-+k3) =K2. ®

The number §p in the expression for ¥k is identically equal to +1 if the particles are bosons;
for fermions, it is +1 or —1 according to whether the permutation P is even or odd. Thus,
quite generally, we may write

sp= (D, 9)

where [P] denotes the order of the permutation; note that the upper sign in this expression
holds for bosons while the lower sign holds for fermions. The factor (N!)~!/2 has been
introduced here to ensure the normalization of the total wavefunction.

Now, it makes no difference to the wavefunction (7) whether the permutations P are
carried out on the coordinates 1,...,N or on the wave vectors kjy,..., ky, because after all
we are going to sum over all the N! permutations. Denoting the permuted coordinates by

P1,...,PN and the permuted wave vectors by Pk, ..., Pky, equation (7) may be written as
YK(L,...,N) = (N) V2> " 8p {uyg, (P1)... e (PN)) (10a)

P
= (N2> " 8p {upi, (1) ... upgey (N)). (10b)

P

Equations (10a and 10b) may now be substituted into (3), with the result

(1., Nle PH|V,. N’y = (N)) 1Y e #reKe/2m
K

x {Zap{ukl (Pl)...ukN(PN)}ZSP{u}E)kl(l/)...u;f)kN(N/)}:|, an
P P

where P and P are any of the N! possible permutations. Now, since a permutation among
the k; changes the wavefunction ¢ at most by a sign, the quantity [y¢*] in (11) is insen-
sitive to such a permutation; the same holds for the exponential factor as well. The
summation over K is, therefore, equivalent to (1/N!) times a summation over all the
vectors ki, ..., ky independently of one another.

Next, in view of the N-fold summation over the k;, all the permutations P will make
equal contributions toward the sum (because they differ from one another only in the
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ordering of the k;). Therefore, we may consider only one of these permutations, say the
one for which Pk; =k, ...,Pky = ky (and hence 63 =1 for both kinds of statistics), and
include a factor of (INV!). The net result is:

(L., NlePH, Ny =yt )

o BI20G 43 /2m |:Z§P [ukl (Pl)uzl(l/)] .. [ukN(PN)uicN (N/)]:| . (12)
P

Substituting from (5) and noting that, in view of the largeness of V, the summations over
the k; may be replaced by integrations, equation (12) becomes

a,....Nle PH|1, . N')

1 _pr2712 IR Y,
~ S Z‘SP [/e B2RE [2meiky-(PL-1) B
: P

/ o~ Bh2KE /2mtiley-(PN-N') 43 kN] 13)
1 m \3N/2
=N (W) szﬁp[f(Pl —1)... f(PN-N")], (14)
where
_ o m s
f(E)—EXP< Zﬁhzg ) (15)

Here, use has been made of the mathematical result (5.3.12), which is clearly a special case
of the present formula.

Introducing the mean thermal wavelength, often referred to as the thermal deBroglie
wavelength,

3 h _(2np\'?
T @rmkT)12 h(?) ' (16)

and rewriting our coordinates as ry,...,ry, the diagonal elements among (14) take the
form

(rl,...,ere_’BH|r1,...,rN

N|A3N ZSP[f(Prl —r) ... f(Pry =), 17)

where

f =exp(—nr2/kz). (18)
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To obtain the partition function of the system, we have to integrate (17) over all the
coordinates involved. However, before we do that, we would like to make some observa-
tions on the summation ). First of all, we note that the leading term in this summation,
namely the one for which Pr; = r;, is identically equal to unity (because f(0) = 1). This
is followed by a group of terms in which only one pair interchange (among the coordi-
nates) has taken place; a typical term in this group will be f(r; — r;)f (r; — rj) where i # j.
This group of terms is followed by other groups of terms in which more than one pair
interchange has taken place. Thus, we may write

Zzlizﬁ'jﬁi+ Zﬁjﬁkfkii"', (19)

P i<j i<j<k

where fj; = f(r; — rj); again, note that the upper (lower) signs in this expansion pertain
to a system of bosons (fermions). Now, the function f;; vanishes rapidly as the distance
rij becomes much larger than the mean thermal wavelength A. It then follows that if the
mean interparticle distance, (V/N)!/3, in the system is much larger than the mean thermal
wavelength, that is, if

3
3 nh

="« 20
QrmkTy32 < (20)

ni

where n is the particle density in the system, then the sum ), in (19) may be approx-
imated by unity. Accordingly, the partition function of the system would become, see
equation (17),

—pH 1 3N AN

This is precisely the result obtained earlier for the classical ideal gas; see equation (3.5.9).
Thus, we have obtained from our quantum-mechanical treatment the precise classical
limit for the partition function Qn(V, T). Incidentally, we have achieved something more.
First, we have automatically recovered here the Gibbs correction factor (1/N!), which was
introduced into the classical treatment on an ad hoc, semi-empirical basis. We, of course,
tried to understand its origin in terms of the inherent indistinguishability of the parti-
cles. Here, we see it coming in a very natural manner and its source indeed lies in the
symmetrization of the wavefunctions of the system (which is ultimately related to the
indistinguishability of the particles); compare to Problem 5.4.

Second, we find here a formal justification for computing the number of microstates
of a system corresponding to a given region of its phase space by dividing the volume of
that region into cells of a “suitable” size and then counting instead the number of these
cells. This correspondence becomes all the more transparent by noting that formula (21)
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is exactly equivalent to the classical expression

3N, 43N
On(V,T) = % / e—ﬂ(p%+-..+pfv)/2m (WJ) , 22)

wo

with wg=h3N. Thirdly, in deriving the classical limit we have also evolved a criterion that
enables us to determine whether a given physical system can be treated classically; math-
ematically, this criterion is given by condition (20). Now, in statistical mechanical studies,
a system that cannot be treated classically is said to be degenerate; the quantity ni3 may,
therefore, be regarded as a degeneracy discriminant. Accordingly, the condition that clas-
sical considerations may be applicable to a given physical system is that “the value of the
degeneracy discriminant of the system be much less than unity.”

Next, we note that, in the classical limit, the diagonal elements of the density matrix are
given by

I\N
(rl,...,rN|;3|r1,...,rN)%<V> ) (23)
which is simply a product of N factors, each equal to (1/V). Recalling that, for a single
particle in a box of volume V, (r|p|r)=(1/V), see equation (5.3.14), we infer that in the
classical limit there is no spatial correlation among the various particles of the system. In
general, however, spatial correlations exist even if the particles are supposedly noninter-
acting; these correlations arise from the symmetrization of the wavefunctions and their
magnitude is quite significant if the interparticle distances in the system are comparable
with the mean thermal wavelength of the particles. To see this more clearly, we consider
the simplest relevant case, namely the one with N = 2. The sum ), is now exactly equal
to 14 [f(r12)]%. Accordingly,

A 1
(r1,rale PH|r o) = 736 [1 +exp (— 2nrf2/kz)] (24)

and hence

1
Q(V,T) = ﬁ// [1j:exp(—anfz/Az}dsrldgrg

2 o0
_ 1 (/\13) |:1:|:‘1//exp (—27rr2/k2)471r2dr:| (25)
0
V\? Ll A3
() |2z (v

1/V\?

\S]
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Combining (24) and (26), we obtain
1
(rl,rgl,ﬁlrl,rg}%W[lieXp(—Zﬂrfz/)»z)] @7

Thus, if r1» is comparable to 2, the probability density (27) may differ considerably from
the classical value (1/V)2. In particular, the probability density for a pair of bosons to
be a distance r apart is larger than the classical, r-independent value by a factor of
[1+ exp (—277%/1?)], which becomes as high as 2 as r — 0. The corresponding result for
a pair of fermions is smaller than the classical value by a factor of [1 — exp (—2771%/2?)],
which becomes as low as 0 as r — 0. Thus, we obtain a positive spatial correlation among
particles obeying Bose statistics and a negative spatial correlation among particles obeying
Fermi statistics; see also Section 6.3.

Another way of expressing correlations (among otherwise noninteracting particles)
is by introducing a statistical interparticle potential vs(r) and then treating the particles
classically (see Uhlenbeck and Gropper, 1932). The potential vs(r) must be such that the
Boltzmann factor exp (—Bvy) is precisely equal to the pair correlation function [...] in (27),
that is,

vs(r) = —kTIn [1+ exp (- 27r/27)]. =

Figure 5.1 shows a plot of the statistical potential vs(r) for a pair of bosons or fermions.
In the Bose case, the potential is throughout attractive, thus giving rise to a “statistical
attraction” among bosons; in the Fermi case, it is throughout repulsive, giving rise to a
“statistical repulsion” among fermions. In either case, the potential vanishes rapidly as r
becomes larger than A; accordingly, its influence becomes less and less important as the
temperature of the system rises.

+1t

o« FD.
= (r/A)
% 0 - L (r/A
& 0.5 1.0

—In2

FIGURE 5.1 The statistical potential vs(r) between a pair of particles obeying Bose-Einstein statistics or Fermi-Dirac
statistics.
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Problems

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

Evaluate the density matrix p,,, of an electron spin in the representation that makes 6, diagonal.
Next, show that the value of (0;), resulting from this representation, is precisely the same as the one
obtained in Section 5.3.

Hint: The representation needed here follows from the one used in Section 5.3 by carrying out a
transformation with the help of the unitary operator

N RTCIRY
:(1/¢2 1/¢2)'

Prove that
N N 0 ,
(gle?|qy = exp [—13H (—lh@,ﬂl)] 8q—q),

where H(—i%9/3q,q) is the Hamiltonian operator of the system in the g-representation, which
formally operates on the Dirac delta function §(q — ¢’). Writing the §-function in a suitable form,
apply this result to (i) a free particle and (ii) a linear harmonic oscillator.

Derive the density matrix p for (i) a free particle and (ii) a linear harmonic oscillator in the
momentum representation and study its main properties along the lines of Section 5.3.

Study the density matrix and the partition function of a system of free particles, using the
unsymmetrized wavefunction (5.4.3) instead of the symmetrized wavefunction (5.5.7). Show that,
following this procedure, one encounters neither the Gibbs’ correction factor (1/N!) nor a spatial
correlation among the particles.

Show that in the first approximation the partition function of a system of N noninteracting,
indistinguishable particles is given by

1
QN(V, 7= WZN(V, 1),

where

Zvv 1) = [expl-p vy &

i<j

vs(r) being the statistical potential (5.5.28). Hence evaluate tht first-order correction to the equation
of state of this system.

Determine the values of the degeneracy discriminant (nA3) for hydrogen, helium, and oxygen at
NTP. Make an estimate of the respective temperature ranges where the magnitude of this quantity
becomes comparable to unity and hence quantum effects become important.

Show that the quantum-mechanical partition function of a system of N interacting particles
approaches the classical form

1 _
- f e PE@D) 3Ng BNy

as the mean thermal wavelength 1 becomes much smaller than (i) the mean interparticle distance
(V/N)1/3 and (ii) a characteristic length rq of the interparticle potential.!!
Prove the following theorem due to Peierls.!2

“If A is the hermitian Hamiltonian operator of a given physical system and {¢,,} an arbitrary
orthonormal set of wavefunctions satisfying the symmetry requirements and the boundary

1See Huang (1963, Section 10.2).
12Gee Peierls (1938) and Huang (1963, Section 10.3).
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conditions of the problem, then the partition function of the system satisfies the following
inequality:

QB = Y exp{—BlonlHlpn));

the equality holds when {¢,,} constitute a complete orthonormal set of eigenfunctions of the
Hamiltonian itself.”



The Theory of Simple Gases

We are now fully equipped with the formalism required for determining the macroscopic
properties of a large variety of physical systems. In most cases, however, derivations run
into serious mathematical difficulties, with the result that one is forced to restrict one’s
analysis either to simpler kinds of systems or to simplified models of actual systems. In
practice, even these restricted studies are carried out in a series of stages, the first stage
of the process being highly “idealized.” The best example of such an idealization is the
familiar ideal gas, a study of which is not only helpful in acquiring facility with the math-
ematical procedures but also throws considerable light on the physical behavior of gases
actually met with in nature. In fact, it also serves as a base on which the theory of real gases
can be founded; see Chapter 10.

In this chapter we propose to derive, and at some length discuss, the most basic pro-
perties of simple gaseous systems obeying quantum statistics; the discussion will include
some of the essential features of diatomic and polyatomic gases and chemical equilibrium.

6.1 Anideal gasin a quantum-mechanical
microcanonical ensemble

We consider a gaseous system of N noninteracting, indistinguishable particles confined
to a space of volume V and sharing a given energy E. The statistical quantity of interest
in this case is Q (N, V, E) which, by definition, denotes the number of distinct microstates
accessible to the system under the macrostate (IV, V, E). While determining this number,
we must remember that a failure to take into account the indistinguishability of the parti-
cles in a proper manner could lead to results which, except in the classical limit, may not
be acceptable. With this in mind, we proceed as follows.

Since, for large V, the single-particle energy levels in the system are very close to one
another, we may divide the energy spectrum into a large number of “groups of levels,”
which may be referred to as energy cells; see Figure 6.1. Let ¢; denote the average energy of
alevel, and g; the (arbitrary) number of levels, in the ith cell; we assume thatallg; > 1. In
a particular situation, we may have n; particles in the first cell, n, particles in the second
cell, and so on. Clearly, the distribution set {n;} must conform to the conditions

> ni=N 4))
i

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00006-2 14 1
© 2011 Elsevier Ltd. All rights reserved.
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945 Ny

93, N3

€2 G925 N2

€4 915

FIGURE 6.1 The grouping of the single-particle energy levels into “cells.”

and
Z nie; = E. 2
i
Then
mem=;wmh 3)
nj

where W{n;} is the number of distinct microstates associated with the distribution set {7n;}
while the primed summation goes over all distribution sets that conform to conditions (1)
and (2). Next,

Win) =] [wa, @
i

where w(i) is the number of distinct microstates associated with the ith cell of the spectrum
(the cell that contains n; particles, to be accommodated among g; levels) while the product
goes over all the cells in the spectrum. Clearly, w(i) is the number of distinct ways in which
the n; identical, and indistinguishable, particles can be distributed among the g; levels of
the ith cell. This number, in the Bose-Einstein case, is given by, see equation (3.8.25),

o _ (nit+g—1)!
=, 5
ws.E. (1) (g — 1! ®)
so that
i+gi— 1)
Wee{ni} =] mitgi— D (6)
i

nl(gi—1)!
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In the Fermi-Dirac case, no single level can accommodate more than one particle; accord-
ingly, the number n; cannot exceed g;. The number w(i) is then given by the “number of
ways in which the g; levels can be divided into two subgroups — one consisting of n; levels
(which will have one particle each) and the other consisting of (g; — n;) levels (which will
be unoccupied).” This number is given by

8!

g — v

wep. (i) =

so that

8!
nil(gi—ny!

Wep.{ni} =[]

i

8)

For completeness, we may include the classical — or what is generally known as the
Maxwell-Boltzmann — case as well. There, the particles are regarded as distinguishable,
with the result that any of the n; particles may be put into any of the g; levels, inde-
pendently of one another, and the resulting states may all be regarded as distinct; the
number of these states is clearly (g;)". Moreover, the distribution set {n;} in this case is
itself regarded as obtainable in

N!
nlli’lg!...

9

different ways which, on the introduction of the Gibbs correction factor, lead to a “weight
factor” of

1 1
=T1—; 10
I’llli’lg!... Uni! (10)

see also Section 1.6, especially equation (1.6.2). Combining these two results, we obtain

(8"
Wns.{ni} = U rlz,-! . (an
Now, the entropy of the system would be given by
S(N,V,E) = kInQ(N, V,E) = kln [Z W{ni}}. (12)
{ng}

It can be shown that, under the conditions of our analysis, the logarithm of the sum on
the right side of (12) can be approximated by the logarithm of the largest term in the sum;
see Problem 3.4. We may, therefore, replace (12) by

S(N,V,E) ~ kInW{nj}, (13)
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where {n}} is the distribution set that maximizes the number W{n;}; the numbers n} are
clearly the most probable values of the distribution numbers 7n;. The maximization, how-
ever, is to be carried out under the restrictions that the quantities NV and E remain constant.
This can be done by the method of Lagrange’s undetermined multipliers; see Section 3.2.
Our condition for determining the most probable distribution set {n7} now turns out to be,
see equations (1), (2), and (13),

sinWin;} — |:a28ni+/325i8nl} =0. (14)
i i

For In W{n;}, we obtain from equations (6), (8), and (11), assuming that not only all g; but
also all n; > 1 (so that the Stirling approximation In(x!) ~ xInx — x can be applied to all the
factorials that appear in these expressions),

InWi{n;} =Y Inw(i)

zZ[niln(&—a)—éan—aﬁ)], (15)
l. n; a gi

where a = —1 for the B.E. case, +1 for the F.D. case, and 0 for the M.B. case. Equation (14)
then becomes

Z[ln (& —a) —a—ﬁsi] sn;=0. (16)
n; ni=n}

i i

In view of the arbitrariness of the increments §7; in (16), we must have (for all i)

ln(gi—a>—a—/38i=0» 17)
n;
so that!

. _ 8i

n; = ea+ﬂs,~+a' (18)

The fact that n} turns out to be directly proportional to g; prompts us to interpret the
quantity

*
n; 1

i A -, 18a
g eFita (182)

which is actually the most probable number of particles per energy level in the ith cell, as
the most probable number of particles in a single level of energy ¢;. Incidentally, our final
result (18a) is totally independent of the manner in which the energy levels of the particles

1Fora critique of this derivation, see Landsberg (1954a, 1961).
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are grouped into cells, so long as the number of levels in each cell is sufficiently large. As

shown in Section 6.2, formula (18a) can also be derived without grouping energy levels

into cells at all; in fact, it is only then that this result becomes truly acceptable!
Substituting (18) into (15), we obtain for the entropy of the gas

S _ oS (8 g 81 o™
k“’an{”i}—Z[”iln<n>y a) aln<1 agi

i 1

ZE:Vya+m0+%h41+wﬂF&1] (19)
12

The first sum on the right side of (19) is identically equal to « N while the second sum is
identically equal to BE. For the third sum, therefore, we have

éZgiln{Hae*“*f’ai} - % —aN - BE. (20)
i

Now, the physical interpretation of the parameters & and 8 here is going to be precisely the
same as in Section 4.3, namely

S
o=z b= (21)

for confirmation see Section 6.2. The right side of equation (20) is, therefore, equal to

S wN E G—(E-TS) PV

T > ¥ b 22)

The thermodynamic pressure of the system is, therefore, given by

pV = %T 3 [giln { 1+ ae—Pei }] . (23)

1

In the Maxwell-Boltzmann case (a — 0), equation (23) takes the form

PV =kT) gie * P =kT» n}=NkT, (24)
i i

which is the familiar equation of state of the classical ideal gas. Note that equation (24) for
the Maxwell-Boltzmann case holds irrespective of the details of the energy spectrum ¢;.

It will be recognized that the expression a~! )", ] in equation (23), being equal to the
thermodynamic quantity (PV/kT), ought to be identical to the g-potential of the ideal gas.
One may;, therefore, expect to obtain from this expression all the macroscopic properties of
this system. However, before demonstrating this, we would like to first develop the formal
theory of an ideal gas in the canonical and grand canonical ensembles.
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6.2 An ideal gas in other quantum-mechanical
ensembles

In the canonical ensemble the thermodynamics of a given system is derived from its
partition function

Qv(V,T)=) e ’F, 6))
E

where E denotes the energy eigenvalues of the system while 8 = 1/kT. Now, an energy
value E can be expressed in terms of the single-particle energies ¢; for instance,

E=Znss, )

where 7, is the number of particles in the single-particle energy state ¢. The values of the
numbers 7, must satisfy the condition

S ne=N. ®)

Equation (1) may then be written as

/ —BY_nee
QN<V,T>={Z}g{na}e i @)
ne

where g{n.} is the statistical weight factor appropriate to the distribution set {n.} and the
summation " goes over all distribution sets that conform to the restrictive condition (3).
The statistical weight factor in different cases is given by

geE{n:} =1, (5)

1 ifalln,=0o0rl
grp.{n:}= . 6)
0 otherwise,

and

1
gus.ined =[] e @

&

Note that in the present treatment we are dealing with single-particle states as individ-
ual states, without requiring them to be grouped into cells; indeed, the weight factors (5),
(6), and (7) follow straightforwardly from their respective predecessors (6.1.6), (6.1.8), and
(6.1.11) by putting all g; = 1.
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First of all, we work out the Maxwell-Boltzmann case. Substituting (7) into (4), we get

Qu(V,T) = {; [(H nl') l—[ (e_ﬁg)m}

€

- IZ [Hng,]'[( pe" } ®

Since the summation here is governed by condition (3), it can be evaluated with the help
of the multinomial theorem, with the result

N
1 —pe
vV, =+ {Z@ P }
1
= 5lQw, Y 9)

in agreement with equation (3.5.15). The evaluation of Q; is, of course, straightforward.
One obtains, using the asymptotic formula (2.4.7) for the number of single-particle states
with energies lying between ¢ and ¢ + dk,

(o]

27V
QWV, T)= Ze_ﬁg ~ %(Zm)g/zfe_ﬁgsl/zds
&
0

=V/A3, (10)
where A [= h/(2r mkT)'/?] is the mean thermal wavelength of the particles. Hence

VN

QnvWV,T) = W; (a1
from which complete thermodynamics of this system can be derived; see, for example,

Section 3.5. Further, we obtain for the grand partition function of this system

Qi V,T)= Y ZNQnV,T) =exp(V/3*); (12)
N=0

compare to equation (4.4.3). We know that the thermodynamics of the system follows
equally well from the expression for Q.

In the Bose-Einstein and Fermi-Dirac cases, we obtain, by substituting (5) and (6)
into (4),

/ —B c€
QnvV,T) = {Z} <e xr ); (13)
Ne
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the difference between the two cases, B.E. and F.D., arises from the values that the
numbers n, can take. Now, in view of restriction (3) on the summation Z’, an explicit
evaluation of the partition function Qp in these cases is rather cumbersome. The grand
partition function @, on the other hand, turns out to be more easily tractable; we have

QeV, 1= [zNZ e_ﬁ§n€'£:| (14a)
{ne}

_ i [Z/]:[(ze—ﬂs)"g] (14b)

Now, the double summation in (14b) — first over the numbers n, constrained by a fixed
value of the total number N, and then over all possible values of N — is equivalent to
a summation over all possible values of the numbers n., independently of one another.
Hence, we may write

Qiz,V,T) = Z [(ze’ﬁfo)no (ze’ﬂal)nl...]

ng,ny,...

- {Z <ze‘ﬂ80)n0:| {Z (ze‘ﬁel)n1:| (15)

Now, in the Bose-Einstein case the n, can be either 0 or 1 or 2 or ..., while in the Fermi-
Dirac case they can be only 0 or 1. Therefore,

1
1_[ — — intheB.E. case, with ze ™ #¢ < 1 (16a)
(1 —zeP¢)
Az, V,T) = &
l_[(l +ze %) intheF.D. case. (16b)
&

The g-potential of the system is thus given by
14%
q(zr V; T) = ﬁ = ln(’{l(zi V) T)

=+ In(lFze ) a7

compare to equation (6.1.23), with g; = 1. The identification of the fugacity z with the
quantity e~* of equation (6.1.23) is quite natural; accordingly, « = —u/kT. As usual, the
upper (lower) sign in equation (17) corresponds to the Bose (Fermi) case.

In the end, we may write our results for g in a form applicable to all three cases:

PV 1
= — = — —pe
qz,V,T) = T2 Eg In(1 + aze *?), (18)
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where a = —1, +1, or 0, depending on the statistics governing the system. In particular, the
classical case (a — 0) gives

gus. =2y e P =2Q, (19)
&€
in agreement with equation (4.4.4). From (18), it follows that

— (g 1
N = — = - 20
Z<3Z>v,T 282271655_,_61 (20)

and

Fe () _y_
b= (3ﬂ)z,v_g:zleﬁs+a’ .

At the same time, the mean occupation number (n.) of level ¢ turns out to be, see equa-

tions (14a) and (17),
352
‘ Q de z,T, all other

B €/ 2,T, all other ¢

_ 1
~zlefeta’

(o8]

(22)

in keeping with equations (20) and (21). Comparing our final result (22) with its coun-
terpart (6.1.18a), we find that the mean value (n) and the most probable value n* of the
occupation number 7 of a single-particle state are indeed identical.

6.3 Statistics of the occupation numbers

Equation (6.2.22) gives the mean occupation number of a single-particle state with energy
¢ as an explicit function of the quantity (¢ — n)/kT:

1

ele—w/kT 1 g° M

(ne) =
The functional behavior of this number is shown in Figure 6.2. In the Fermi-Dirac case
(a=+1), the mean occupation number never exceeds unity, for the variable n, itself
cannot have a value other than 0 or 1. Moreover, for ¢ < p and |¢ — | > kT, the mean occu-
pation number tends to its maximum possible value 1. In the Bose-Einstein case (a = —1),
we must have . < all ¢; see equation (6.2.16a). In fact, when u becomes equal to the low-
est value of ¢, say &g, the occupancy of that particular level becomes infinitely high, which
leads to the phenomenon of Bose-Einstein condensation; see Sections 7.1 and 7.2. For
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FIGURE 6.2 The mean occupation number (n.) of a single-particle energy state ¢ in a system of noninteracting
particles: curve 1 is for fermions, curve 2 for bosons, and curve 3 for the Maxwell-Boltzmann particles.

u < go, all values of (¢ — u) are positive and the behavior of all (rn.) is nonsingular. Finally,
in the Maxwell-Boltzmann case (a = 0), the mean occupation number takes the familiar
form

(ne)ms. = exp{(n — &)/kT} oc exp(—e/kT). v

The important thing to note here is that the distinction between the quantum statistics
(a = +1) and the classical statistics (@ = 0) becomes imperceptible when, for all values of ¢
that are of practical interest,

exp{(e — w)/kT} > 1. 3)
In that event, equation (1) essentially reduces to (2) and we may write, instead of (3),
(ne) < 1. (4)

Condition (4) is quite understandable, for it implies that the probability of any of the n,
being greater than unity is quite negligible, with the result that the classical weight factors
g{n.}, as given by equation (6.2.7), become essentially equal to 1. The distinction between
the classical treatment and the quantum-mechanical treatment then becomes rather
insignificant. Correspondingly, we find, see Figure 6.2, that for large values of (¢ — u)/kT
the quantum curves 1 and 2 essentially merge into the classical curve 3. Since we already
know that the higher the temperature of the system the better the validity of the classical
treatment, condition (3) also implies that u, the chemical potential of the system, must
be negative and large in magnitude. This means that the fugacity z[= exp(u/kT)] of the
system must be much smaller than unity; see also equation (6.2.22). One can see, from
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equations (4.4.6) and (4.4.29), that this is further equivalent to the requirement

N3
Vv <1, (5)

which agrees with condition (5.5.20).
We shall now examine statistical fluctuations in the variable n.. Going a step further
from the calculation that led to equation (6.2.22), we have

1 10\
<n§>:[<—) a} ; ®)
a p oe z,T, all other ¢
2
(n?) — (n.)* = [(—1;> ln(,‘z}
p oe z,T, all other ¢

19
“[ha) ], ”

For the relative mean-square fluctuation, we obtain (irrespective of the statistics obeyed
by the particles)

it follows that

2\ 2
(na) <n£) — (li) { 1 } =Zﬁl€ﬁ£; (8)
(ng)? B de ) [ (ne)

of course, the actual value of this quantity will depend on the statistics of the particles
because, for a given particle density (IN/V) and a given temperature 7, the value of z will
be different for different statistics.

It seems more instructive to write (8) in the form

()~ () _ 1
(ns)? (ne)

—a. 9)

In the classical case (a = 0), the relative fluctuation is normal. In the Fermi-Dirac case, it
is given by 1/(n.) — 1, which is below normal and tends to vanish as (n.) — 1. In the Bose-
Einstein case, the fluctuation is clearly above normal.?> Obviously, this result would apply
to a gas of photons and, hence, to the oscillator states in the black-body radiation. In the
latter context, Einstein derived this result as early as 1909 following Planck’s approach and
even pointed out that the term 1 in the expression for the fluctuation may be attributed
to the wave character of the radiation and the term 1/(n.) to the particle character of the
photons; for details, see Kittel (1958), ter Haar (1968).

Closely related to the subject of fluctuations is the problem of “statistical correlations
in photon beams,” which have been observed experimentally (see Hanbury Brown and

2The special case of fluctuations in the ground state occupation number, ng, of a Bose-Einstein system has been
discussed by Wergeland (1969) and by Fujiwara, ter Haar, and Wergeland (1970).
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Twiss, 1956, 1957, 1958) and have been explained theoretically in terms of the quantum-
statistical nature of these fluctuations (see Purcell, 1956; Kothari and Auluck, 1957). For
further details, refer to Mandel, Sudarshan, and Wolf (1964); and Holliday and Sage (1964).

For greater understanding of the statistics of the occupation numbers, we evaluate
the quantity p,(n), which is the probability that there are exactly n particles in a state of
energy ¢. Referring to equation (6.2.14b), we infer that p, (n) o (ze~#¢)"*. On normalization,
it becomes in the Bose-Einstein case

pemlng. = (ze7)" [1 - ze77°]

_(dne N1 me)”
_<(n£)+1) (ne>+1_((n8)+1)"+1' (10)

In the Fermi-Dirac case, we get

pemlep. = (2)"[1 +Ze_ﬁ£]_1

1-(n,) for n=0
= 11

{(ns) for n=1. (4
In the Maxwell-Boltzmann case, we have p,(n) « (ze~#¢)"/n! instead; see equation (6.2.8).
On normalization, we get

(e ) (e
pe(M)IMmB. = exp(ee )~ nl e\l (12)

Distribution (12) is clearly a Poisson distribution, for which the mean square deviation of
the variable in question is equal to the mean value itself; compare to equation (9), with
a = 0. It also resembles the distribution of the total particle number N in a grand canonical
ensemble consisting of ideal, classical systems; see Problem 4.4. We also note that the ratio
pe(n)/p:(n— 1) in this case varies inversely with n, which is a “normal” statistical behavior
of uncorrelated events.

On the other hand, the distribution in the Bose-Einstein case is geometric, with a con-
stant common ratio (n.)/({n.) + 1). This means that the probability of a state ¢ acquiring
one more particle for itself is independent of the number of particles already occupying
that state; thus, in comparison with the “normal” statistical behavior, bosons exhibit a spe-
cial tendency of “bunching” together, which means a positive statistical correlation among
them. In contrast, fermions exhibit a negative statistical correlation.

6.4 Kinetic considerations

The thermodynamic pressure of an ideal gas is given by equation (6.1.23) or (6.2.18). In
view of the largeness of volume V, the single-particle energy states ¢ would be so close
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to one another that a summation over them may be replaced by integration. One thereby
gets

o0
kT - 4rp?dp
_ Be(p)
pP= P /ln[1+aze ] 3
0

47 kT p3 —pe(p)
=3 |:31n[1+aze ”’]

T3 aze—he)
aze de
+ / 5 Trazerem P ap® |
o 3 1+aze=PeW " dp
The integrated part vanishes at both limits while the rest of the expression reduces to

o0
47 1 de
P=—t | ———— (p== ) pPap. 1
3h3/z—1e/35(l’)+a<pdp)pdp )
0

Now, the total number of particles in the system is given by

(o]

Vdp 4nV 1 )
N= /(np) TEEE /z—leﬂs(p) va’ ap. @
0
Comparing (1) and (2), we can write
1N/ de 1
P= 3V <PdTQ> = gn(lm), (3)

where n is the particle density in the gas and u the speed of an individual particle. If the
relationship between the energy ¢ and the momentum p is of the form ¢ o p¥, then

s s E
P:§n<€):§V’ (4)
the particular cases s =1 and s = 2 are pretty easy to recognize. It should be noted here
that results (3) and (4) hold independently of the statistics obeyed by the particles.

The structure of formula (3) suggests that the pressure of the gas arises essentially from
the physical motion of the particles; it should, therefore, be derivable from kinetic consid-
erations alone. To do this, we consider the bombardment, by the particles of the gas, on
the walls of the container. Let us take, for example, an element of area dA on one of the
walls normal to the z-axis, see Figure 6.3, and focus our attention on those particles whose
velocity lies between u and u + du; the number of such particles per unit volume may be

denoted by nf (u)du, where

/ fwdu=1. (5)

allu
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FIGURE 6.3 The molecular bombardment on one of the walls of the container.

Now, the question is: how many of these particles will strike the area dA in time dt? The
answer is: all those particles that happen to lie in a cylindrical region of base dA and height
udt, as shown in Figure 6.3. Since the volume of this region is (dA - u)dt, the number of
such particles would be {(dA - u)dt x nf (u)du}. On reflection from the wall, the normal
component of the momentum of a particle would undergo a change from p, to —p;; as
a result, the normal momentum imparted by these particles per unit time to a unit area
of the wall would be 2 p,{u.nf(u)du}. Integrating this expression over all relevant u, we
obtain the total normal momentum imparted per unit time to a unit area of the wall by all
the particles of the gas which, by definition, is the kinetic pressure of the gas:

o0 o0 o0
P=2n / / / pzuzf wducduydu. 6)°
Uy=—00 Uy=—00 ;=0

Since (i) f(w) is a function of u alone and (ii) the product (p;u;.) is an even function of u;,
the foregoing result may be written as

P=n / (pzuz)f (wydu. (7)

allu

Comparing (7) with (5), we obtain

P = n(p,uz) = n(pucos?6) (8)
1
= §n(pu), 9)

which is identical to (3).

3Clearly, only those velocities for which u, > 0 are relevant here.
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In a similar manner, we can determine the rate of effusion of the gas particles through
a hole (of unit area) in the wall. This is given by, compared to (6),

R=n [ / / uzf (wyduxduydu, (10)

Ux=—00 Uy=—00 1z=0
2r m/2 oo

=n/ f /{ucosef(u)}(uZSinedudedgb); an

$=0 =0 u=0

note that the condition u, > 0 restricts the range of the angle 6 between the values 0 and
7 /2. Carrying out integrations over 6 and ¢, we obtain

R=nn /f(u)u3 du. (12)
0
In view of the fact that
/ fw@nu? du) =1, (5a)
0
equation (12) may be written as
R= ! 13
= Zn(u). (13)

Again, this result holds independently of the statistics obeyed by the particles.

It is obvious that the velocity distribution among the effused particles is considerably
different from the one among the particles inside the container. This is due to the fact that,
firstly, the velocity component u, of the effused particles must be positive (which intro-
duces an element of anisotropy into the distribution) and, secondly, the particles with
larger values of u, appear with an extra weightage, the weightage being directly propor-
tional to the value of u,; see equation (10). As a result of this, (i) the effused particles carry
with them a net forward momentum, thus causing the container to experience a recoil
force, and (ii) they carry away a relatively large amount of energy per particle, thus leaving
the gas in the container at not only a progressively decreasing pressure and density but
also a progressively decreasing temperature; see Problem 6.14.

6.5 Gaseous systems composed of molecules

with internal motion

In most of our studies so far we have considered only the translational part of the molecu-
lar motion. Though this aspect of motion is invariably present in a gaseous system, other
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aspects, which are essentially concerned with the internal motion of the molecules, also
exist. It is only natural that in the calculation of the physical properties of such a sys-
tem, contributions arising from these motions are also taken into account. In doing so,
we shall assume that (i) the effects of the intermolecular interactions are negligible and (ii)
the nondegeneracy criterion

3 nh’

A= K1 5.5.20
(2mrmkT)3/2 < ( )

is fulfilled; this makes our system an ideal, Boltzmannian gas. Under these assumptions,
which hold sufficiently well in a large number of applications, the partition function of the
system is given by

1
vV, T) = 51V, v, €))
where
V.

the factor within the curly brackets is the familiar translational partition function of a
molecule, while j(T) is the partition function corresponding to internal motions. The latter
may be written as

()= gie i, 3)
i

where ¢; is the energy associated with a state of internal motion (characterized by the
quantum numbers i), while g; is the multiplicity of that state.

The contributions made by the internal motions of the molecules, over and above
the translational degrees of freedom, follow straightforwardly from the function j(T). We
obtain

Aint = —NkT1nj, 4
Hint = —kT1Inj, )
. . .
Sint = Nk (ln i+ Tﬁ In ]> ) (6)
Uipnt = NkT? 9 Inj @)
int = aT J

and

0 [ D
(Cv)int = Nkﬁ {T ﬁln]}- ®)
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Thus, the central problem in this study is to derive an explicit expression for the function
J(T) from a knowledge of the internal states of the molecules. For this, we note that the
internal state of a molecule is determined by (i) the electronic state, (ii) the state of the
nuclei, (iii) the vibrational state, and (iv) the rotational state. Rigorously speaking, these
four modes of excitation mutually interact; in many cases, however, they can be treated
independently of one another. We can then write

J(D) = jelec (Mjnuc (D) jvib (Tjrot (T), (3a)

with the result that the net contribution made by the internal motions to the various
thermodynamic properties of the system is given by a simple sum of the four respective
contributions. There is one interaction, however, that plays a special role in the case of
homonuclear molecules, such as AA, and which is between the states of the nuclei and the
rotational states. In such a case, we better write

](T) = jelec (T)jnuc—rot(T)jvib (T). (3b)

We now examine this problem for various systems in the order of increasing complexity.

6.5.A Monatomic molecules

For simplicity, we consider a monatomic gas at temperatures such that the thermal energy
kT is small in comparison with the ionization energy ¢iop; for different atoms, this amounts
to the condition T « ¢jon/k ~ 10* — 10° K. At these temperatures, the number of ionized
atoms in the gas would be insignificant. The same would be true of atoms in the excited
states, for the separation of any of the excited states from the ground state of the atom
is generally of the same order of magnitude as the ionization energy itself. Thus, we may
regard all atoms in the gas to be in their (electronic) ground state.

Now, there is a special class of atoms, namely He, Ne, A, ..., which, in their ground state,
possess neither orbital angular momentum nor spin (L = S = 0). Their (electronic) ground
state is clearly a singlet, with g, = 1. The nucleus, however, possesses a degeneracy that
arises from the possibility of different orientations of the nuclear spin.? If the value of
this spin is Sy, the corresponding degeneracy factor g, = 2S5, + 1. Moreover, a monatomic
molecule cannot have any vibrational or rotational states. The internal partition function
(3a) of such a molecule is, therefore, given by

J() = (8)grst. = 8e 8n= 28, + 1. 9)

4As is well known, the presence of the nuclear spin gives rise to the so-called hyperfine structure in the electronic
states. However, the intervals of this structure are such that, for practically all temperatures of interest, they are small in
comparison with kT’ for concreteness, these intervals correspond to T-values of the order of 107! to 10° K. Accordingly,
in the evaluation of the partition function j(T), the hyperfine splitting of the electronic state may be disregarded while
the multiplicity introduced by the nuclear spin may be taken into account through a degeneracy factor.
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Equations (4) through (8) then tell us that the internal motions in this case contribute only
toward properties such as the chemical potential and the entropy of the gas; they do not
contribute toward the internal energy and the specific heat.

If, on the other hand, the ground state does not possess orbital angular momentum but
possesses spin (L = 0, S # 0 — as, for example, in the case of alkali atoms), then the ground
state will still have no fine structure; it will, however, have a degeneracy g. =2S+1. As a
result, the internal partition function j(T) will get multiplied by a factor of (25+ 1) and
the properties such as the chemical potential and the entropy of the gas will get modified
accordingly.

In other cases, the ground state of the atom may possess both orbital angular momen-
tum and spin (L # 0, S # 0); the ground state would then possess a definite fine structure.
The intervals of this structure are, in general, comparable to kT; hence, in the evaluation
of the partition function, the energies of the various components of the fine structure will
have to be taken into account. Since these components differ from one another in the value
of the total angular momentum J, the relevant partition function may be written as

Jetee(T) =Y (2] + e /kT. (10)
J

The foregoing expression simplifies considerably in the following limiting cases:

(@) kT > all ¢;; then

Jelee(D) > Y (2] +1) = 2L+ 1)(2S+ 1). (10a)
J
(b) kT « all g7; then
Jetec(T) = (2Jo + e 0/*T, (10b)

where Jj is the total angular momentum, and gg the energy, of the atom in the lowest state.
In either case, the electronic motion makes no contribution toward the specific heat of
the gas. Of course, at intermediate temperatures, we do obtain a contribution toward this
property. And, in view of the fact that both at high and low temperatures the specific heat
tends to be equal to the translational value %Nk, it must pass through a maximum at a
temperature comparable to the separation of the fine structure levels.” Needless to say, the
multiplicity (25, + 1) introduced by the nuclear spin must be taken into account in each
case.

6.5.B Diatomic molecules

Now we consider a diatomic gas at temperatures such that k7T is small compared to the
energy of dissociation; for different molecules, this amounts once again to the condition

5It seems worthwhile to note here that the values of Ag;/k for the components of the normal triplet term of oxygen
are 230 K and 320 K, while those for the normal quintuplet term of iron range from 600 to 1,400 K.
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T < egiss/k ~ 10* —10° K. At these temperatures the number of dissociated molecules in
the gas would be insignificant. At the same time, in most cases, there would be practi-
cally no molecules in the excited states as well, for the separation of any of these states
from the ground state of the molecule is in general comparable to the dissociation energy
itself. Accordingly, in the evaluation of j(T), we have to take into account only the lowest
electronic state of the molecule.

The lowest electronic state, in most cases, is nondegenerate: g, = 1. We then need not
consider any further the question of the electronic state making a contribution toward
the thermodynamic properties of the gas. However, certain molecules (though not very
many) have, in their lowest electronic state, either (i) a nonzero orbital angular momentum
(A #0) or (ii) a nonzero spin (S # 0) or (iii) both. In case (i), the electronic state acquires a
twofold degeneracy corresponding to the two possible orientations of the oribital angular
momentum relative to the molecular axis;’ as a result, g, = 2. In case (ii), the state acquires
a degeneracy 25 + 1 corresponding to the space quantization of the spin.?

In both these cases the chemical potential and the entropy of the gas are modified by
the multiplicity of the electronic state, while the energy and the specific heat remain unaf-
fected. In case (iii), we encounter a fine structure that necessitates a rather detailed study
because the intervals of this structure are generally of the same order of magnitude as kT.
In particular, for a doublet fine-structure term, such as the one that arises in the molecule
NO (IT;2,3/2 with a separation of 178 K, the components themselves being A-doublets),
we have for the electronic partition function

Jelec(T) = go + g1~ 2/*T, 11

where gp and g; are the degeneracy factors of the two components while A is their separa-
tion energy. The contribution made by (11) toward the various thermodynamic properties
of the gas can be calculated with the help of formulae (4) through (8). In particular, we
obtain for the contribution toward the specific heat

Nk (A/KT)?
[1+ (go/81)eA/FTT [1 + (g1/80)e~2/kT)

(CV)elec = (12)

We note that this contribution vanishes both for T« A /k and for T > A /k and is maxi-
mum for a certain temperature ~A /k; compare to the corresponding situation in the case
of monatomic molecules.

An odd case arises with oxygen. The separation between its normal term 3% and the first excited term A is about
11,250 K, whereas the dissociation energy is about 55,000 K. The relevant factor e~#! /KT therefore, can be quite significant
even when the factor e~¢dis/¥T is not, say for 7'~ 2000 to 6000 K.

"Strictly speaking, the term in question splits into two levels — the so-called A-doublet. The separation of the levels,
however, is such that we can safely neglect it.

8The separation of the resulting levels is again negligible from the thermodynamic point of view; as an example, one
may cite the very narrow triplet term of Oy.
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We now consider the effect of the vibrational states of the molecules on the thermo-
dynamic properties of the gas. To have an idea of the temperature range over which this
effect would be significant, we note that the magnitude of the corresponding quantum of
energy, namely o, for different diatomic gases is of order 103 K. Thus, we would obtain full
contributions (consistent with the dictates of the equipartition theorem) at temperatures
of the order of 10* K or more, and practically no contribution at temperatures of the order
of 10% K or less. Let us assume that the temperature is not high enough to excite vibra-
tional states of large energy; the oscillations of the nuclei then remain small in amplitude
and hence harmonic. The energy levels for a mode of frequency w are then given by the
well-known expression (1 + 3)ho.’

The evaluation of the vibrational partition function j;,(T) is quite elementary; see
Section 3.8. In view of the rapid convergence of the series involved, the summation may
formally be extended to n = co. The corresponding contributions toward the various ther-
modynamic properties of the system are then given by equations (3.8.16) through (3.8.21).
In particular,

@y)z e‘@”/T hw

(Cv)vip = Nk (
We note that for T > ©,, the vibrational specific heat is very nearly equal to the equipar-
tition value Nk; otherwise, it is always less than Nk. In particular, for T « ©,, the specific
heat tends to zero (see Figure 6.4); the vibrational degrees of freedom are then said to be
“frozen.”

At sufficiently high temperatures, when vibrations with large n are also excited, the
effects of anharmonicity and of interaction between the vibrational and the rotational
modes of the molecule can become important.'® However, since this happens only at large
n, the relevant corrections to the various thermodynamic quantities can be determined
even classically; see Problems 3.29 and 3.30. One finds that the first-order correction to
Cyib is directly proportional to the temperature of the gas.

Finally, we consider the effect of (i) the states of the nuclei and (ii) the rotational states
of the molecule; wherever necessary, we shall take into account the mutual interaction of
these modes. This interaction is of no relevance in the case of heteronuclear molecules,
such as AB; it is, however, important in the case of homonuclear molecules, such as AA. We
may, therefore, consider the two cases separately.

The states of the nuclei in the heteronuclear case may be treated separately from
the rotational states of the molecule. Proceeding in the same manner as for monatomic
molecules, we conclude that the effect of the nuclear states is adequately taken care of

%It may be pointed out that the vibrational motion of a molecule is influenced by the centrifugal force arising from
the molecular rotation. This leads to an interaction between the rotational and the vibrational modes. However, unless
the temperature is too high, this interaction can be neglected and the two modes treated independently of one another.

%Tn principle, these two effects are of the same order of magnitude.
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FIGURE 6.4 The vibrational specific heat of a gas of diatomic molecules. At T = ©,, the specific heat is already
about 93 percent of the equipartition value.

through a degeneracy factor g,. Denoting the spins of the two nuclei by S4 and Sg,
8n =282+ 1(@2Sp+1). (14)

As before, we obtain a finite contribution toward the chemical potential and the entropy

of the gas but none toward the internal energy and the specific heat.
Now, the rotational levels of a linear “rigid” rotator, with two degrees of freedom (for
the axis of rotation) and the principal moments of inertia (I, I, 0), are given by

erot = l(l+ DAR%/2I, 1=0,1,2,...; (15)

here, I = Mré where u[= mymy/(my + my)] is the reduced mass of the nuclei and ry the equi-
librium distance between them. The rotational partition function of the molecule is then
given by

00 B2
]rot(T) = I_E 0(2l+ I)EXP{—Z(Z-I- l)ﬁ }
},—LZ

-\ O, _
_g(ZH—l)exp{—l(l—k 1) T }, Or= 3Tk (16)

The values of ®,, for all gases except the ones involving the isotopes H and D, are much
smaller than room temperature. For example, the value of ®, for HCl is about 15 K, for N>,
O, and NO it lies between 2 K and 3 K, while for Cl, it is about one-third of a degree. On
the other hand, the values of ®, for H,, D», and HD are, respectively, 85 K, 43 K, and 64 K.
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These numbers give us an idea of the respective temperature ranges in which the effects
arising from the discreteness of the rotational states are expected to be important.

For T >» ©,, the spectrum of the rotational states may be approximated by a contin-
uum. The summation in (16) is then replaced by an integration:

T ® T
jrot(T)%/(21+l)exp{—l(l+ 1)—’}dl= —. 17)
T O
0
The rotational specific heat is then given by
(Cv)rot = NEK, (18)

consistent with the equipartition theorem.
A better evaluation of the sum in (16) can be made with the help of the Euler-Maclaurin
formula, namely

’;)f(n) /f(x)dx+ f(0)—*f (0)+ﬁf 0) — 30, 240f ) +-- (19)
Writing
fx) = @2x+1)exp{—x(x+1)0/T},
one obtains
T 1 10, 4 [(6,\
]rot(T) 7+3+ET+315 <?> + - (20)

which is the so-called Mulholland’s formula; as expected, the main term of this formula is
identical to the classical partition function (17). The corresponding result for the specific

heat is
1 /0,\> 16 [0,\°
(CV)rot—Nk{l‘f'%(T) +%<T> +"'}, (21)

which shows that at high temperatures the rotational specific heat decreases with temper-
ature and ultimately tends to the classical value Nk. Thus, at high (but finite) temperatures
the rotational specific heat of a diatomic gas is greater than the classical value. On the other
hand, it must go to zero as T — 0. We, therefore, conclude that it passes through at least
one maximum. Numerical studies show that there is only one maximum that appears at a
temperature of about 0.80, and has a value of about 1.1Nk; see Figure 6.5.
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FIGURE 6.5 The rotational specific heat of a gas of heteronuclear diatomic molecules.

In the other limiting case, when T « ©,, one may retain only the first few terms of the
sum in (16); then

Jrot(T) =1+ 3e20r/T 4 56760r/T 4 .. , 22)

from which one obtains, in the lowest approximation,
® 2
(CV)rot ~ 12Nk <Tr> e_2®r/T_ (23)

Thus, as T — 0, the specific heat drops exponentially to zero; see again Figure 6.5. We,
therefore, conclude that at low enough temperatures the rotational degrees of freedom of
the molecules are also “frozen.”

At this stage it appears worthwhile to remark that, since the internal motions of the
molecules do not make any contribution toward the pressure of the gas (Ajy: being inde-
pendent of V), the quantity (Cp — Cy) is the same for a diatomic gas as for a monatomic
one. Moreover, under the assumptions made in the very beginning of this section, the
value of this quantity at all temperatures of interest would be equal to the classical value
Nk. Thus, at sufficiently low temperatures (when rotational as well as vibrational degrees
of freedom of the molecules are “frozen”), we have, by virtue of the translational motion
alone,

3 5 5
Cy = =Nk, Cp=_-NK; =-. 24
V=73 P=3 v=3 (24)
As temperature rises, the rotational degrees of freedom begin to “loosen up” until we
reach temperatures that are much larger than ©, but much smaller than ®,; the rotational

degrees of freedom are then fully excited while the vibrational ones are still “frozen.”
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FIGURE 6.6 The rotational-vibrational specific heat, Cp, of the diatomic gases HD, HT, and DT.

Accordingly, for ©, « T <« Oy,

5 7 7
Cy ==Nk, Cp==Nk; =—. 25
V=75 P=3 v=s (25)

As temperature rises further, the vibrational degrees of freedom as well start loosening up,
until we reach temperatures that are much larger than ©,. Then, the vibrational degrees of
freedom are also fully excited and we have

Cy = gNk, Cp= gNk; y = g (26)
These features are displayed in Figure 6.6 where the experimental results for Cp are plot-
ted for three gases HD, HT, and DT. We note that, in view of the considerable difference
between the values of ®; and ©,, the situation depicted by (25) prevails over a consider-
ably large range of temperatures. In passing, it may be pointed out that, for most diatomic
gases, the situation at room temperatures corresponds to the one depicted by (25).

We now study the case of homonuclear molecules, such as AA. To start with, we consider
the limiting case of high temperatures where classical approximation is admissible. The
rotational motion of the molecule may then be visualized as a rotation of the molecular
axis, that is, the line joining the two nuclei, about an “axis of rotation” that is perpendic-
ular to the molecular axis and passes through the center of mass of the molecule. Then,
the two opposing positions of the molecular axis, namely the ones corresponding to the
azimuthal angles ¢ and ¢ + &, differ simply by an interchange of the two identical nuclei
and, hence, correspond to only one distinct state of the molecule. Therefore, in the evalu-
ation of the partition function, the range of the angle ¢ should be taken as (0, 7) instead of
the customary (0,27). Moreover, since the energy of rotational motion does not depend on
angle ¢, the only effect of this on the partition function of the molecule would be to reduce
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it by a factor of 2. We thus obtain, in the classical approximation,'!

T
Jnuc—rot(T) = (284 +1)? 27)

20,
Obviously, the factor 2 here will not affect the specific heat of the gas; in the classical
approximation, therefore, the specific heat of a gas of homonuclear molecules is the same
as that of a corresponding gas of heteronuclear molecules.

In contrast, significant changes result at relatively lower temperatures where the states
of rotational motion have to be treated as discrete. These changes arise from the cou-
pling between the nuclear and the rotational states that in turn arises from the symmetry
character of the nuclear-rotational wavefunction. As discussed in Section 5.4, the total
wavefunction of a physical state must be either symmetric or antisymmetric (depend-
ing on the statistics obeyed by the particles involved) with respect to an interchange of
two identical particles. Now, the rotational wavefunction of a diatomic molecule is sym-
metric or antisymmetric depending on whether the quantum number !/ is even or odd.
The nuclear wavefunction, on the other hand, consists of a linear combination of the spin
functions of the two nuclei and its symmetry character depends on the manner in which
the combination is formed. It is not difficult to see that, of the (254 + 1)? different com-
binations that one constructs, exactly (S4 + 1)(2S4 + 1) are symmetric with respect to an
interchange of the nuclei and the remaining S4(2S4 + 1) antisymmetric.'? In constructing
the total wavefunction, as a product of the nuclear and the rotational wavefunctions, we
then proceed as follows:

(i) If the nuclei are fermions (S = %, %, ...), as in the molecule H>, the total wavefunction

must be antisymmetric. To secure this, we may associate any one of the S4(2S54 + 1)
antisymmetric nuclear wavefunctions with any one of the even-/ rotational
wavefunctions or any one of the (S4 + 1)(254 + 1) symmetric nuclear wavefunctions
with any one of the odd-! rotational wavefunctions. Accordingly, the nuclear-
rotational partition function of such a molecule would be

JEDI | (T) = Sa(2Sa + 1)Teven + (Sa + 1)(254 + D)Foqds 28)

1t seems instructive to outline here the purely classical derivation of the rotational partition function. Specifying
the rotation of the molecule by the angles (9, ¢) and the corresponding momenta (ps, py), the kinetic energy assumes the
form

_ 1.2 12
Erot = 21 Py + 75in75 Po

from which

. ¢ma}(
Jrot(T) = gz [ € */MT (dpydpydo dp) = 5L [ dg.
0

For heteronuclear molecules ¢yax = 27, while for homonuclear ones ¢max = 7.
125ee, for example, Schiff (1968, Section 41).
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where
Feven =y 21+ 1exp{—lI+1)©;/T) (29)
1=0,2,...
and
Todd= Y _ l+Dexp{-Ill+1)©,/T). (30)
1=1,3,...

(ii) If the nuclei are bosons (S4 =0,1,2,...), as in the molecule D,, the total wavefunction
must be symmetric. To secure this, we may associate any one of the (5S4 +1)(2S4 + 1)
symmetric nuclear wavefunctions with any one of the even-/ rotational wavefunc-
tions or any one of the S4(254 + 1) antisymmetric nuclear wavefunctions with any
one of the odd-!/ rotational wavefunctions. We then have

jg?llf.—)rot(T) = (Sa+ 1)(2S4 + Dreven + Sa(25a + Dodq- (31)
At high temperatures, it is the larger values of / that contribute most to the sums (29) and
(30). The difference between the two sums is then negligibly small, and we have

1,
Teven = T'odd = E]rot(T) =T/20y; (32)
see equations (16) and (17). Consequently,

.(B.E.) (F.D.) (2S4+1)2T/20),, (33)

Jnuc=rot =Jnuc—rot =

in agreement with our previous result (27). Under these circumstances, the statistics gov-
erning the nuclei does not make a significant difference to the thermodynamic behaviour
of the gas.

Things change when the temperature of the gas is in a range comparable to the value
of ©,. It seems most reasonable then to regard the gas as a mixture of two components,
generally referred to as ortho- and para-, whose relative concentrations in equilibrium are
determined by the relative magnitudes of the two parts of the partition function (28) or
(31), as the case may be. Customarily, the name ortho- is given to that component that
carries the larger statistical weight. Thus, in the case of fermions (as in Hy), the ortho- to
para-ratio is given by

n D) _ (Sa+ Droaq

(34)
SATeven
while in the case of bosons (as in D), the corresponding ratio is given by
nBE) (Sa+ l)reven. (35)

SaTodd
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As temperature rises, the factor ryqq/7even tends to unity and the ratio n, in each case,
approaches the temperature-independent value (Sg + 1)/S4. In the case of Hy, this lim-
iting value is 3 (since Sy = %) while in the case of D» it is 2 (since Sy = 1). At sufficiently
low temperatures, one may retain only the main terms of the sums (29) and (30), with the
result that

Todd

T'even

r

20
:3exp<— T) (T < ©y), (36)

which tends to zero as T — 0. The ratio n then tends to zero in the case of fermions and
to infinity in the case of bosons. Hence, as T — 0, the hydrogen gas is wholly para-, while
deuterium is wholly ortho-; of course, in each case, the molecules do settle down in the
rotational state [ = 0.

At intermediate temperatures, one has to work with the equilibrium ratio (34), or (35),
and with the composite partition function (28), or (31), in order to compute the thermody-
namic properties of the gas. One finds, however, that the theoretical results so derived do
not generally agree with the ones obtained experimentally. This discrepancy was resolved
by Dennison (1927) who pointed out that the samples of hydrogen, or deuterium, ordi-
narily subjected to experiment are not in thermal equilibrium as regards the relative
magnitudes of the ortho- and para-components. These samples are ordinarily prepared
and kept at room temperatures that are well above ®,, with the result that the ortho- to
para-ratio in them is very nearly equal to the limiting value (S5 + 1)S4.

If now the temperature is lowered, one would expect this ratio to change in accordance
with equation (34), or (35). However, it does not do so for the following reason. Since
the transition of a molecule from one form of existence to another involves the flipping
of the spin of one of its nuclei, the transition probability of the process is quite small. Actu-
ally, the periods involved are of the order of a year! Obviously, one cannot expect to attain
the true equilibrium ratio n during the short times available. Consequently, even at lower
temperatures, what one generally has is a nonequilibrium mixture of two independent
substances, the relative concentration of which is preassigned. The partition functions (28)
and (31) as such are, therefore, inapplicable; we rather have directly for the specific heat

Sa Sa+1
CED) _ C 24T o 37
25,41 event 5g, 17 Codd 57
and
Sa+1 Sa
CBE) _ __Couds 38
254 +1 even‘*’zSA_’_1 odd (38)
where
B
Ceven/odd = Nkﬁ { Tz(a/a T)InTeven/odd } (39)

We have, therefore, to compute Ceven and Cyqq Separately and then derive the net value
of the rotational specific heat with the help of formula (37) or (38), as the case may be.
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(T10,) —»

FIGURE 6.7 The theoretical specific heat of a 1:3 mixture of para-hydrogen and ortho-hydrogen. The experimental
points originate from various sources listed in Wannier (1966).

Figure 6.7 shows the relevant results for hydrogen. Curves 1 and 2 correspond to the para-
hydrogen (Ceven) and the ortho-hydrogen (C,q4), respectively, while curve 3 represents the
weighted mean, as given by equation (37). The experimental results are also shown in the
figure; the agreement between theory and experiment is clearly good.

Further evidence in favor of Dennison’s explanation is obtained by performing exper-
iments with ortho—para mixtures of different relative concentration. This can be done by
speeding up the ortho—para conversion by passing hydrogen over activated charcoal. By
doing this at various temperatures, and afterwards removing the catalyst, one can fix the
ratio n at any desired value. The specific heat then follows a curve obtained by mixing Ceyen
and C,4q with appropriate weight factors. Further, if one measures the specific heat of the
gas in such a way that the ratio n, at every temperature 7T, has the value that is given by
formula (34), it indeed follows the curve obtained from expression (28) for the partition
function.

6.5.C Polyatomic molecules

Once again, the translational degrees of freedom of the molecules contribute their usual
share, %k per molecule, toward the specific heat of the gas. As regards the lowest electronic
state, it is, in most cases, far below any of the excited states; nevertheless, it generally pos-
sesses a multiplicity (depending on the orbital and spin angular momenta of the state)
that can be taken care of by a degeneracy factor g.. As regards the rotational states, they
can be treated classically because the large values of the moments of inertia characteris-
tic of polyatomic molecules make the quantum of rotational energy, 4?/21;, much smaller
than the thermal energy kT at practically all temperatures of interest. Consequently, the
interaction between the rotational states and the states of the nuclei can also be treated
classically. As a result, the nuclear-rotational partition function is given by the product of
the respective partition functions, divided by a symmetry number y that denotes the num-
ber of physically indistinguishable configurations realized during one complete rotation of
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the molecule:!3

gnucjg)t(T); (40)

jnucfrot(T) =
compare to equation (27). Here, jr%t(T) is the rotational partition function of the molecule
evaluated in the classical approximation (without paying regard to the presence of identi-
cal nuclei, if any); it is given by

C 1y g1/2 (20T 2 12 kT\Y? (213kT\'/? )
Jrot - "2 12 12

where I, I, and I3 are the principal moments of inertia of the molecule; see Prob-
lem 6.27.1* The rotational specific heat is then given by

9 d . 3
Crot = Nkﬁ{Tzﬁ In ]rC(,t(T)} = 5K, (42)

consistent with the equipartition theorem.

As regards vibrational states, we first note that, unlike a diatomic molecule, a poly-
atomic molecule has not one but several vibrational degrees of freedom. In particular, a
noncollinear molecule consisting of 7 atoms has 3n — 6 vibrational degrees of freedom, six
degrees of freedom out of the total 3n having gone into the translational and rotational
motions. On the other hand, a collinear molecule consisting of n atoms would have 3n —5
vibrational degrees of freedom, for the rotational motion in this case has only two, not
three, degrees of freedom. The vibrational degrees of freedom correspond to a set of nor-
mal modes characterized by a set of frequencies w;. It might happen that some of these
frequencies have identical values; we then speak of degenerate frequencies.'®

In the harmonic approximation, these normal modes may be treated independently
of one another. The vibrational partition function of the molecule is then given by the
product of the partition functions corresponding to individual normal modes, that is,

' o—0i/2T Fie:
Juib(T) = 1_[ W; 0;= TZ, (43)

1

BEor example, the symmetry number y for H,O (isosceles triangle) is 2, for NH3 (regular triangular pyramid) it is 3,
while for CHy (tetrahedron) and CgHg (regular hexagon) it is 12. For heteronuclear molecules, the symmetry number is
unity.

4In the case of a collinear molecule, such as N>O or CO,, there are only two degrees of freedom for rotation; con-
sequently, jrcot(T) is given by (2IkT/ h2), where I is the (common) value of the two moments of inertia of the molecule;
see equation (17). Of course, we must also take into account the symmetry number y. In the examples quoted here,
the molecule N, O, being spatially asymmetric (NNO), has symmetry number 1, while the molecule CO,, being spatially
symmetric (OCO), has symmetry number 2.

5Eor example, of the four frequencies characterizing the normal modes of vibration of the collinear molecule OCO,

two that correspond to the (transverse) bending modes, namely g ¢ O, are equal while the others that correspond to

{

(longitudinal) oscillations along the molecular axis, namely «<-O C— <O and «-O C O—, are different; see Problem 6.28.
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and the vibrational specific heat is given by the sum of the contributions arising from the
individual modes:

0;\* /T
Cyib = Nk <J> — L (44)
Vi ; { T) (e®/T —1)?

In general, the various ©; are of order 102 K; for instance, in the case of CO,, which was
cited in footnote 15, ®; = ®, =960 K, ©3 =1,990 K, and ®4 = 3,510 K. For temperatures
large in comparison with all ®;, the specific heat would be given by the equipartition value,
namely Nk for each of the normal modes. In practice, however, this limit can hardly be
realized because the polyatomic molecules generally break up well before such high tem-
peratures are reached. Secondly, the different frequencies w; of a polyatomic molecule
are generally spread over a rather wide range of values. Consequently, as temperature
rises, different modes of vibration get gradually “included” into the process; in between
these “inclusions,” the specific heat of the gas may stay constant over considerably large
stretches of temperature.

6.6 Chemical equilibrium

The equilibrium amounts of chemicals in a chemical reaction are determined by the
chemical potentials of each of the species. Consider the following chemical reaction
between chemical species A and B to form species X and Y with stoichiometric coefficients
va, VB, Vx, and vy:

vaA+vgB = vy X +vyY. (1)

Each individual reaction that occurs changes the number of molecules of each species
according to the stoichiometric coefficients. If the initial numbers of molecules of the
species are N3, N9, N7, and N, then the numbers of each species after AN chemical reac-
tions have occurred would be Ny = N3 —voAN, Ng = Nj — vgAN, Nx = N? +vx AN, and
Ny = Nl(} +vyAN. If AN > 0, the reaction has proceeded in the positive direction increas-
ing the numbers of X and Y. If AN < 0, the reaction has proceeded in the direction of
increasing the numbers of A and B. If the reaction takes place in a closed isothermal sys-
tem with fixed pressure, the Gibbs free energy G(Na, Np, Nx, Ny, P, T) is changed by the
amount

AG = (—vana —vpup +vxiux +vyuy)AN, 2)

where p4 = (2% is the chemical potential of species A, and so on; see Sections 3.3,
ONa)T,p

4.7, and Appendix H. Since the Gibbs free energy decreases as a system approaches equi-
librium, AG < 0. When the system reaches chemical equilibrium, the Gibbs free energy
reaches its minimum value so AG = 0. This gives us the general relationship for chemical
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equilibrium of the reaction in equation (1), namely

VAMA + VBB = VXUX + VY LY. 3)

Note that if a chemical species that acts as a catalyst is added in equal amounts to
both sides of equation (1), the equilibrium relation (3) is unaffected. Therefore, a cata-
lyst may serve to increase the rate of approach toward equilibrium, without affecting the
equilibrium condition itself.

If the free energy can be approximated as a sum of the free energies of the individual
species such as in an ideal gas or a dilute solution, then we can derive a simple rela-
tion between the equilibrium densities of the species. Following from equations (3.5.10)
and (6.5.4), the Helmholtz free energy of a classical ideal gas consisting of molecules with
internal degrees of freedom can be written as

3
A(N,V,T)=Nse —|—Nlen<N‘iL) — NkT — NkTInj(T), 4)

where ¢ is the ground state energy of the molecule, » = h/~/2nmkT is the thermal
deBroglie wavelength, and j(T) is the partition function for the internal degrees of freedom
of the molecule. This gives 