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On the universal behavior of sorption isotherms in
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Abstract

Adsorption–desorption isotherms in disordered mesoporous solids, described by the Dual Site-Bond Model, are obtained through Monte
Carlo simulations and their behavior is correlated to the topological properties of the porous networks and to their percolation properties,
extending previous results to the general case of variable connectivity networks. A quasi-universal curve is found which may be useful in the
problem of obtaining pore size distributions from the analysis of experimental Adsorption–desorption isotherms.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There is a great variety of physicochemical processes
occurring in porous media (in general disordered porous
media), which are strongly affected by the morphological
and topological characteristics of the porous structure, like,
for example, the invasive displacement of a fluid by an-
other (with important applications to oil recovery), imbibi-
tion and drying processes, separation of fluid mixtures, het-
erogeneous catalysis and catalyst deactivation, etc.[1–6].
The study of this kind of systems is exciting due both to the
need for the development of new theoretical methods for the
understanding of their behavior, as well as to the potential-
ity of their applications to processes of practical interest. In
spite of an intense activity in this field during the last two
decades, there are still important aspects which need to be
solved or more deeply investigated, in particular, the connec-
tion between the genesis of the porous medium and its mor-
phological and topological properties, the way the structure
of the medium, represented, for example, by spatial corre-

∗ Corresponding author.
E-mail address:giorgiozgrablich942@hotmail.com (G. Zgrablich).

lation, affects the percolation properties and the behavior of
critical exponents, the development of a methodology to ob-
tain the morphological and topological properties from ex-
perimental determinations (the problem ofcharacterization
of the porous medium), specially for mesoporous materials,
the way these properties affect the behavior of fluids in the
medium and the way in which some processes are affected
when the porous space reduces to nanoscopic dimensions
(micropores). The present work is an effort to contribute to
the understanding of the fundamental phenomena in this field
and to the discussion of applications of practical interest.

Among the above problems, the characterization of meso-
porous and macroporous materials, especially regarding
the determination of the pore size distribution from experi-
ments, is a subject of great practical importance involving
the development of both theoretical and experimental meth-
ods. Some of the experimental methods, like NMR, SAXS,
and SANS, require sophisticate instruments while others,
like porosimetry and Adsorption–desorption of vapors, use
much simpler apparatus, which can practically be avail-
able to any laboratory. Therefore, it is of special interest to
count on a reliable theoretical background for the analysis
of Adsorption–desorption or intrusion–retraction experi-
ments. However, the development of such a theory still
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stands as an open problem presenting interesting theoreti-
cal challenges[7–11], and this is more remarkable in the
case of disordered (or amorphous) porous media. In fact,
the shape and extent of the Adsorption–desorption hystere-
sis loop (ADHL) of vapors in mesoporous materials, or
the intrusion–retraction hysteresis loop (IRHL) of mercury
in mesoporous and macroporous ones, are known to be
influenced by several characteristics of the porous space:
the geometrical shape of the pores, their size distribution,
and the interconnectivity of the porous network are among
those, which have been studied intensively for a long time.

The problem has two aspects: in first place, a model de-
scribing the properties of the medium must be given, and
then, within that model, a procedure to determine the pore
size distribution must be developed.

As for the first aspect, modeling of porous media has
evolved along two different, but complementary, lines: con-
tinuum and discrete models. Continuum models considering
the medium as a composite material, described by a con-
tinuous characteristic function attaining the value 0 at an
empty point and 1 at a solid point, have proven to be more
adequate to study the flux of fluids through the medium
[12–16]. On the other hand, discrete models, representing
the porous space by a network of voids (sites) connected
by throats (bonds), have demonstrated to be a powerful
tool to study the percolation properties of the medium and
those phenomena depending on its connectivity properties
[4,9,17–24]. Among the family of discrete models, the Dual
Site-Bond Model (DSBM), introduced by Mayagoitia et al.
[25,26] is the simplest model, which takes into account
spatial correlation among pore sizes, allowing in this way
to generate porous networks with different structures. The
DSBM describes the porous solid as a network of sites (cor-
responding to the main voids of the porous space) connected
by bonds (corresponding to the necks between adjacent
voids). Within the framework of this model, through ana-
lytical calculations on a Cayley tree (where no closed loops
are involved)[27] and through Monte Carlo simulations
in two-dimensional networks[28], it has been shown that
spatial correlation among pore sizes affect drastically per-
colation probabilities. It is then to be expected that in more
realistic three-dimensional networks, spatial correlation will
have similar effects on the percolation probabilities, and
these, in turn, will affect the ADHL.

As for the second aspect, procedures to obtain the site and
bond distributions have been determined satisfactorily so far
only for non-correlated porous networks and in the extreme
cases where the pore volume can be attributed entirely to
the sites or entirely to the bonds[11,29,30]. We remark that
real disordered mesoporous materials are hardly conceiv-
able as completely random media and that the determination
of percolation probabilities in three-dimensional correlated
porous networks is a non-solved problem.

Recent Monte Carlo simulation studies of ADHL on cor-
related networks generated through the DSBM[31,32]have
shown that, when representing the data as the mean bond

radius versus the relative pressure at the desorption branch
knee, all data corresponding to different site and bond dis-
tributions collapse on a single universal curve, and that this
fact can be used to determine the site and bond size distribu-
tions from experimental ADHL. These results were obtained
for constant connectivity networks.

Since many disordered porous media are more realis-
tically represented by variable connectivity networks, the
purpose of the present work is to investigate how the uni-
versality behavior is affected by a variable connectivity. In
Section 2, we briefly review the DSBM and the simula-
tion method to obtain ADHL. Results about the behavior
of ADHL and universality are presented inSection 3, and
finally, conclusions are given inSection 4.

2. Dual Site-Bond Model (DSBM)

Let S(R) andB(R) be the distribution functions associated
with the site and bond sizeR, and FS(R) and FB(R) the
corresponding probability density functions, such that[25]

S(R) =
∫ R

0
FS(R′)dR′ ; B(R) =

∫ R

0
FB(R′)dR′ (1)

and let the intervalss = [s1, s2) and b = [b1, b2) be the
support of site and bond measures, i.e., the set of values of
R for which FS andFB are positively defined. The way in
which sites and bonds are connected to form the network is
given by the joint probability density function,F(RS,RB), of
finding a site with sizeRS ∈ (RS, RS+dRS) connected to a
bond with sizeRB ∈ (RB, RB + dRB). The two basic laws
describing the DSBM are[25,26]

B(R) − S(R) ≥ 0 (2)

F(RS, RB) = 0 forRS < RB (3)

The first law,Eq. (2), implies thatb1 ≤ s1 and b2 ≤
s2, while the second law,Eq. (3), called theConstruction
Principle (CP), is of a local nature and expresses the fact
that the sizeRB of any bond cannot be bigger than that of
the two connected sites (in a porous medium the size of a
throat cannot be larger than that of the two connected voids).

If the joint probability function is expressed as

F(RS, RB) = FS(RS) FB(RB) Φ(RS, RB) (4)

then the correlation functionΦ carries the information about
the site-bond assignation procedure in the network. In the
simplest case, where sites and bonds are assigned to each
other in the most random way as allowed by the CP, called
theSelf Consistentcase, thenΦ(RS, RB) attains the follow-
ing expression[25]

Φ(RS, RB) =
exp

[
−∫ RS

RB
(dB/B − S)

]
B(RB) − S(RB)

(5)

Eq. (5) is deduced by following a particular method of
site and bond assignment: first, sites with smaller sizes are
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Fig. 1. Uniform site and bond size probability densities, showing schemat-
ically the overlapping between the two distributions.

assigned to a set of bonds, each of which can adopt a random
size, although restricted to the condition indicated by the CP,
and in accordance with the available distribution of bonds.
The procedure follows in such a way as to continue the
exhaustion of sites, each time larger and larger.

If we denote byΩ the overlapping area between the site
and bond probability density functions, as shown inFig. 1for
the simple case of uniform distributions, the functionΦ has
the following properties: (i)ΦΩ→0(RS, RB) = 1, ∀RS, RB,
sites and bonds are distributed completely at random, and (ii)
ΦΩ→1(RS, RB) ∝ δ(RS − RB), ∀RS, RB, sites and bonds
group together in macroscopic patches, each having a value
of R. Then, the overlappingΩ is the fundamental parameter
describing the topology of the network in this model.

This behavior also suggests thatΩ must be related to
somecorrelation length(which would be a physically more
meaningful parameter), characteristic of the decay of the
spatial correlation function defined as:

C(r) = 〈RS(�r0)RS(�r0 + �r)〉 = 〈RB(�r0)RB(�r0 + �r)〉 (6)

In fact, it is expected thatC(r) decays approximately in
an exponential form (this would be the exact behavior for a
one-dimensional network generated by a Markov chain of
events).

C(r) ≈ exp

(−r

l0

)
(7)

wherel0 is the correlation length (measured in lattice con-
stants). Monte Carlo simulations have shown that the corre-
lation lengthl0 is related to the overlappingΩ through the
relation[33]

l0 ≈ 2Ω2

(1 − Ω)2
(8)

We observe thatl0 → 0 for Ω → 0 and l0 → ∞ for
Ω → 1.

The problem of numerical generation of DSBM networks
has been intensively investigated[4]. We employ here the
method presented in[34] for the Monte Carlo generation of
such networks, which can be resumed in the following very
simple terms. An initial network is prepared by sampling the
values ofRS andRB from the corresponding probability den-
sity functionsFS andFB and distributing them completely

at random on the lattice. This network will have the correct
FS andFB but not the correctΦ(RS, RB), in particular, the
CP is not obeyed everywhere. Then, a Markov chain of new
states of the network is generated by choosing at random
pairs of sites (or bonds) attempting to exchange them, the
exchange is accepted if it does not violate the CP. It has been
demonstrated[34] that this procedure leads finally to the
equilibrium distribution for the network and that it does not
suffer from the imperfections introduced by other methods
(mainly anisotropy). In order to generate a network with lo-
cally variable connectivity (i.e. the precise number of bonds
that can surround each site throughout the network) and a
mean connectivitȳZ (i.e. the average number of bonds that
delimit a site), an appropriate fraction of bonds withRB = 0
is initially assigned at random in the network, and then the
usual procedure described above is followed[35].

Once a network with the desired properties has been gen-
erated, ADHL can be simulated by following the method
described in[31], which can briefly be described as follows.
For the adsorption branch, at any given value of the relative
pressurep/p0, an adsorbed thickness is calculated through,
for example, the Halsey equation, and the elements of the
porous network (sites and bonds) are inspected, so that those
who have reached the critical Kelvin radius for capillary
condensation to occur are filled. For the desorption branch,
at any given value of the relative pressure, a particular filled
element must fulfill two conditions in order to be evapo-
rated: (i) it must have the appropriate radius (dictated by the
Kelvin equation), and (ii) it must be connected to the vapor
phase. The evaporated element is then left with an adsorbed
thickness corresponding to the given relative pressure.

3. Results and discussion

Our results were obtained for the sorption of N2 at 77 K
on a cubic network under the following assumptions: (i) sites
are considered to be of spherical geometry, while bonds are
cylinders; and (ii) the pore volume is mainly contained in
the sites. Different kinds of pore size distributions (sites and
bonds) were tested, in particular: (i) Gaussian distribution,
with mean valuesSm and Bm for sites and bonds, respec-
tively, and the same standard deviationσ. The limits for
sampling radii for sites and bonds were chosen to beSm±2σ

andBm ± 2σ, respectively. (ii) Gamma distribution, of the
form Γ(R) = (R − R0)

n−1 e−(R−R0), truncated at the upper
limit at the valueR0 + 2n. The values of site and bond ra-
dius at maximum probability (Sm andBm, respectively) are
obtained in each case asR0 + (n − 1). For a given set of
ADHL, the mean site radius was kept fixed and the overlap-
ping Ω was varied by changing the mean bond radius.

A reduced set of typical ADHL, where the relative ad-
sorbed volume V is plotted as a function of the relative pres-
surep/p0, is presented inFig. 2, for site and bond Gaussian
distributions withSm = 11 nm,σ = 0.8 nm. The left column
corresponds to non-correlated networks withBm = 4.5 nm,
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Fig. 2. Adsorption–desorption N2 isotherms at 77 K for site and bond
Gaussian distributions withSm = 11 nm, σ = 0.8 nm. Left column:
Bm = 4.5 nm, Ω = 0. Right column:Bm = 7.1 nm, Ω = 0.5.

resulting inΩ = 0, while the right column is for correlated
networks withBm = 7.1 nm, resulting inΩ = 0.5. The
mean connectivity,̄Z, changes from top to bottom through
the values 2, 4, and 6. As it is well known, during the adsorp-
tion process the vapor phase accesses to the whole porous
structure, and there are no percolation effects. On the con-
trary, during the desorption process, a given pore is allowed
to evaporate at a given pressure only if two conditions are
accomplished: first, its radius must correspond to the critical
Kelvin radius for the given pressure, and second, the pore
must be connected to the vapor phase. This last condition,
introduces percolation effects on the desorption branch: the
larger is the percolation threshold for the porous network
the lower is the relative pressure needed to produce an ap-
preciable desorption (in other words, the retarding in the
desorption branch increases with the percolation threshold).
In Fig. 2, we can appreciate that, for a given mean connec-
tivity, the retarding of the desorption branch is smaller for
correlated than for non-correlated networks. This is a conse-
quence of the fact that the percolation threshold in correlated
networks decreases withΩ [27,28]. It can also be observed
that the retarding effect increases when the mean connectiv-
ity decreases, as expected from normal percolation theory.

The above analysis of the effects of percolation on ADHL
for correlated networks suggests that the position of the bond
distribution, determined byBm, and the relative pressure at
the desorption knee,p∗ are the two most relevant parameters.

When all results for the Gaussian and Gamma distribu-
tions, for constant connectivityZ = 6, are represented as
Bm versusp∗, as it is shown inFig. 3, it turns out that all
data collapse on a single “quasi-universal” curve, given, by
means of a least-square curve fitting, by the simple equation

Bm (nm) = 1

1 − p∗ (9)

whereBm should be measured in nanometers; for compar-
ison reasons,Fig. 3 also includes a dotted line, that repre-
sents the result of plotting the radiusBm of a single bond
against the relative vapor pressure at which capillary evap-
oration occurs in this lonely pore. TheBm versusp∗ rela-
tionship represents a quasi-universal equation in the sense
that, at least for the variations we have considered here, it
does not depend on the shape of the size distribution (i.e.
the same universal curve stands for any combination ofBm,
Sm, andσ of the twofold site-bond size distribution) or on
the position of the site distribution, or even on the adsorp-
tion process considered (i.e. cooperative effects involving the
coalescence of liquid–vapor menisci proceeding fromZ-1
bonds for condensation in an adjacent site to happen[27]).
The universality is limited by the facts that we considered a
network whose pore volume is essentially attributed to the
sites and that we considered the weakest possible form of
correlation, i.e. the one imposed by the CP and given by the
DSBM. At the present time, we do not have a theoretical
or approximate scaling justification of this equation and it
should be taken as an empirical law.

In the more general case of variable connectivity, it is
found that the value of̄Z strongly affects the behavior and
different variables must be used to make that all data col-
lapse on a single curve, as shown inFig. 4, where each sym-
bol corresponding to a given connectivity, also correspond
to several different porous networks (i.e., with different cor-
relations and different site and bond distributions). The dot-
ted line inFig. 4 represents once more the relationship be-
tweenBm andp∗ for a single bond. TheBm versusp∗ fitting
for variable site connectivity gives rise to a more general
quasi-universal curve given by the empirical equation

Bm(nm) + 0.22Z̄ = p∗

(1 − p∗)1.81
+ 6.5(p∗)1.7 (10)

Eq. (9) can now be used to propose a characterization
method, which we believe is a first realistic approach to ob-
tain the site and bond size distributions from experimental
ADHL of vapors for disordered mesoporous materials. The
method can be described through the following steps:

(i) Obtain the size distribution for sites from the experi-
mental adsorption branch. This, assuming that the vol-
ume associated with bonds is negligible, can be eas-
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Fig. 3. Quasi-universal behavior for constant connectivityZ = 6. All pore sizes are given here in Angstroms. The dotted line represents the result of
plotting the radiusBm of a single bond (assumed as a cylindrical pore open at both ends) against the relative vapor pressure at which capillary evaporation
from this lonely pore occurs.

ily achieved from a differential analysis of that branch
[3,8].

(ii) Independently of the shape of the distribution obtained
for the sites, assume the same shape for the bond dis-
tribution. This is not a too strong restriction, consider-
ing that other quite stronger restrictions are necessarily
made in any method, like the one regarding the pore
geometry (sites and bonds).

(iii) Obtain p∗ from the experimental desorption branch and
calculateBm fromEq. (9). This will give the positioning
of the bond distribution.

Fig. 4. Quasi-universal behavior for variable connectivity. Pore sizes are
given here in Angstroms. The dotted line represents the result of plotting
the radiusBm of a single bond (assumed as a cylindrical pore open at both
ends) against the relative vapor pressure at which capillary evaporation
from this lonely pore occurs.

Fig. 5. Test of Seaton’s scaling behavior: (a) non-correlated networks,
Ω = 0; (b) correlated networks,Ω = 0.5.
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However, this is valid only for constant connectivityZ =
6. For the more general case of variable connectivity,Z̄

should be first determined by some independent method,
and thenEq. (10)should be used in place ofEq. (9). One
of the methods to determine the mean connectivity is the
one based on lattice size scaling, due to Seaton[2,10]. In
order to test such a scaling behavior, we have repeated the
simulations of ADHL for different lattice sizes,L, and plot-
ted the quantityL�/�Z̄Fversus(Zf − 1.5)L1/�, whereF is
the fraction of evaporated bonds at a given pressure,f is the
fraction of bonds whose radius satisfies Kelvin equation at
that pressure, andβ andν are the usual critical exponents
for normal percolation.Fig. 5(a)shows the results for un-
correlated networks (Ω = 0), where we see that all data cor-
responding to networks with different connectivities scale
correctly collapsing on a single curve. For correlated net-
works (Ω = 0.5), however, this does not happen, as shown
in Fig. 5(b). We therefore conclude that Seaton’s scaling law
is not valid for correlated networks, and that further theo-
retical developments are necessary in order to determine the
mean connectivity through lattice size-scaling methods.

4. Conclusions

We have studied through Monte Carlo simulation how
ADHL are affected by the topological characteristics,
closely related to the percolation characteristics, of corre-
lated three-dimensional porous networks described by the
DSBM for Gaussian and Gamma size distributions. We have
in addition assumed that the pore volume in our networks
resides mainly in the sites, whereas bonds only contribute to
percolation effects. The use of the DSBM has the advantage
that, once fixed the shape of site and bond size distribu-
tions, the topological characteristics of the porous network
depend on a single parameter, the overlappingΩ between
those distributions, closely related to the correlation length
of the network,Eq. (8).

A wide range of the parameters has been investigated and
we have found out that all results can be conveniently repre-
sented in terms of two main variables:p∗, the relative pres-
sure at the desorption knee in the ADHL, andBm, the size
of maximum probability in the bond distribution. By using
these two variables, all results scatter closely around a char-
acteristic quasi-universal curve,Eq. (9)for constant connec-
tivity Z = 6, or Eq. (10)for general variable connectivity
networks. These findings provide us with a method to deter-
mine the site and bond distributions for correlated networks
from the analysis of experimental ADHL, provided that the
mean connectivity can be determined independently.
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